private void findEigenVectorsFromSchur()

in commons-math-legacy/src/main/java/org/apache/commons/math4/legacy/linear/EigenDecomposition.java [765:940]


    private void findEigenVectorsFromSchur(final SchurTransformer schur)
        throws MathArithmeticException {
        final double[][] matrixT = schur.getT().getData();
        final double[][] matrixP = schur.getP().getData();

        final int n = matrixT.length;

        // compute matrix norm
        double norm = 0.0;
        for (int i = 0; i < n; i++) {
           for (int j = JdkMath.max(i - 1, 0); j < n; j++) {
               norm += JdkMath.abs(matrixT[i][j]);
           }
        }

        // we can not handle a matrix with zero norm
        if (Precision.equals(norm, 0.0, EPSILON)) {
           throw new MathArithmeticException(LocalizedFormats.ZERO_NORM);
        }

        // Backsubstitute to find vectors of upper triangular form

        double r = 0.0;
        double s = 0.0;
        double z = 0.0;

        for (int idx = n - 1; idx >= 0; idx--) {
            double p = realEigenvalues[idx];
            double q = imagEigenvalues[idx];

            if (Precision.equals(q, 0.0)) {
                // Real vector
                int l = idx;
                matrixT[idx][idx] = 1.0;
                for (int i = idx - 1; i >= 0; i--) {
                    double w = matrixT[i][i] - p;
                    r = 0.0;
                    for (int j = l; j <= idx; j++) {
                        r += matrixT[i][j] * matrixT[j][idx];
                    }
                    if (Precision.compareTo(imagEigenvalues[i], 0.0, EPSILON) < 0) {
                        z = w;
                        s = r;
                    } else {
                        l = i;
                        if (Precision.equals(imagEigenvalues[i], 0.0)) {
                            if (w != 0.0) {
                                matrixT[i][idx] = -r / w;
                            } else {
                                matrixT[i][idx] = -r / (Precision.EPSILON * norm);
                            }
                        } else {
                            // Solve real equations
                            double x = matrixT[i][i + 1];
                            double y = matrixT[i + 1][i];
                            q = (realEigenvalues[i] - p) * (realEigenvalues[i] - p) +
                                imagEigenvalues[i] * imagEigenvalues[i];
                            double t = (x * s - z * r) / q;
                            matrixT[i][idx] = t;
                            if (JdkMath.abs(x) > JdkMath.abs(z)) {
                                matrixT[i + 1][idx] = (-r - w * t) / x;
                            } else {
                                matrixT[i + 1][idx] = (-s - y * t) / z;
                            }
                        }

                        // Overflow control
                        double t = JdkMath.abs(matrixT[i][idx]);
                        if ((Precision.EPSILON * t) * t > 1) {
                            for (int j = i; j <= idx; j++) {
                                matrixT[j][idx] /= t;
                            }
                        }
                    }
                }
            } else if (q < 0.0) {
                // Complex vector
                int l = idx - 1;

                // Last vector component imaginary so matrix is triangular
                if (JdkMath.abs(matrixT[idx][idx - 1]) > JdkMath.abs(matrixT[idx - 1][idx])) {
                    matrixT[idx - 1][idx - 1] = q / matrixT[idx][idx - 1];
                    matrixT[idx - 1][idx]     = -(matrixT[idx][idx] - p) / matrixT[idx][idx - 1];
                } else {
                    final Complex result = cdiv(0.0, -matrixT[idx - 1][idx],
                                                matrixT[idx - 1][idx - 1] - p, q);
                    matrixT[idx - 1][idx - 1] = result.getReal();
                    matrixT[idx - 1][idx]     = result.getImaginary();
                }

                matrixT[idx][idx - 1] = 0.0;
                matrixT[idx][idx]     = 1.0;

                for (int i = idx - 2; i >= 0; i--) {
                    double ra = 0.0;
                    double sa = 0.0;
                    for (int j = l; j <= idx; j++) {
                        ra += matrixT[i][j] * matrixT[j][idx - 1];
                        sa += matrixT[i][j] * matrixT[j][idx];
                    }
                    double w = matrixT[i][i] - p;

                    if (Precision.compareTo(imagEigenvalues[i], 0.0, EPSILON) < 0) {
                        z = w;
                        r = ra;
                        s = sa;
                    } else {
                        l = i;
                        if (Precision.equals(imagEigenvalues[i], 0.0)) {
                            final Complex c = cdiv(-ra, -sa, w, q);
                            matrixT[i][idx - 1] = c.getReal();
                            matrixT[i][idx] = c.getImaginary();
                        } else {
                            // Solve complex equations
                            double x = matrixT[i][i + 1];
                            double y = matrixT[i + 1][i];
                            double vr = (realEigenvalues[i] - p) * (realEigenvalues[i] - p) +
                                        imagEigenvalues[i] * imagEigenvalues[i] - q * q;
                            final double vi = (realEigenvalues[i] - p) * 2.0 * q;
                            if (Precision.equals(vr, 0.0) && Precision.equals(vi, 0.0)) {
                                vr = Precision.EPSILON * norm *
                                     (JdkMath.abs(w) + JdkMath.abs(q) + JdkMath.abs(x) +
                                      JdkMath.abs(y) + JdkMath.abs(z));
                            }
                            final Complex c     = cdiv(x * r - z * ra + q * sa,
                                                       x * s - z * sa - q * ra, vr, vi);
                            matrixT[i][idx - 1] = c.getReal();
                            matrixT[i][idx]     = c.getImaginary();

                            if (JdkMath.abs(x) > (JdkMath.abs(z) + JdkMath.abs(q))) {
                                matrixT[i + 1][idx - 1] = (-ra - w * matrixT[i][idx - 1] +
                                                           q * matrixT[i][idx]) / x;
                                matrixT[i + 1][idx]     = (-sa - w * matrixT[i][idx] -
                                                           q * matrixT[i][idx - 1]) / x;
                            } else {
                                final Complex c2        = cdiv(-r - y * matrixT[i][idx - 1],
                                                               -s - y * matrixT[i][idx], z, q);
                                matrixT[i + 1][idx - 1] = c2.getReal();
                                matrixT[i + 1][idx]     = c2.getImaginary();
                            }
                        }

                        // Overflow control
                        double t = JdkMath.max(JdkMath.abs(matrixT[i][idx - 1]),
                                                JdkMath.abs(matrixT[i][idx]));
                        if ((Precision.EPSILON * t) * t > 1) {
                            for (int j = i; j <= idx; j++) {
                                matrixT[j][idx - 1] /= t;
                                matrixT[j][idx] /= t;
                            }
                        }
                    }
                }
            }
        }

        // Back transformation to get eigenvectors of original matrix
        for (int j = n - 1; j >= 0; j--) {
            for (int i = 0; i <= n - 1; i++) {
                z = 0.0;
                for (int k = 0; k <= JdkMath.min(j, n - 1); k++) {
                    z += matrixP[i][k] * matrixT[k][j];
                }
                matrixP[i][j] = z;
            }
        }

        eigenvectors = new ArrayRealVector[n];
        final double[] tmp = new double[n];
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                tmp[j] = matrixP[j][i];
            }
            eigenvectors[i] = new ArrayRealVector(tmp);
        }
    }