in stats/statistical_scoring.py [0:0]
def manova(test_row, data, categorical):
data = data.dropna()
data.loc[len(data)] = test_row
le = LabelEncoder()
for val in categorical:
data[val] = le.fit_transform(data[val])
for col in data.columns:
if (col not in categorical):
data[col] = (data[col] - np.mean(data[col])) / np.std(data[col])
test_row = data.iloc[len(data) - 1]
data.drop([len(data) - 1])
data_good = data[data[10] == 0]
data_bad = data[data[10] == 1]
x_good = data_good.drop([10, 9], axis=1)
y_good = data_good[[9]]
x_bad = data_bad.drop([10, 9], axis=1)
y_bad = data_bad[[9]]
man_good = MANOVA(endog=x_good, exog=y_good)
man_bad = MANOVA(endog=x_bad, exog=y_bad)
output_good = man_good.mv_test()
output_bad = man_bad.mv_test()
out_good = np.array(output_good['x0']['stat'])
out_bad = np.array(output_bad['x0']['stat'])
# Wilki's Lambda
WL_good = out_good[0][0]
# Pillai's Trace
PT_good = out_good[1][0]
# Hotelling-Lawley Trace
HT_good = out_good[2][0]
# Roy's Greatest Roots
RGR_good = out_good[3][0]
WL_bad = out_bad[0][0]
PT_bad = out_bad[1][0]
HT_bad = out_bad[2][0]
RGR_bad = out_bad[3][0]
x = test_row.drop([10, 9])
y = test_row[[9]]
data_test_x = x_good.append(x)
data_test_y = y_good.append(y)
man_test = MANOVA(endog=data_test_x, exog=data_test_y)
output_test = man_test.mv_test()
out_test = np.array(output_test['x0']['stat'])
# Wilki's Lambda
WL_test_good = out_test[0][0]
# Pillai's Trace
PT_test_good = out_test[1][0]
# Hotelling-Lawley Trace
HT_test_good = out_test[2][0]
# Roy's Greatest Roots
RGR_test_good = out_test[3][0]
data_test_x = x_bad.append(x)
data_test_y = y_bad.append(y)
man_test = MANOVA(endog=data_test_x, exog=data_test_y)
output_test = man_test.mv_test()
out_test = np.array(output_test['x0']['stat'])
WL_test_bad = out_test[0][0]
PT_test_bad = out_test[1][0]
HT_test_bad = out_test[2][0]
RGR_test_bad = out_test[3][0]
scorecard = {
"method": "MANOVA",
"WL_good": WL_good,
"WL_test_good": WL_test_good,
"WL_bad": WL_bad,
"WL_test_bad": WL_test_bad
}
ret = "WL good : " + str(WL_good) + " WL test good : " + str(WL_test_good) + \
"\nWL bad : " + \
str(WL_bad) + " WL test bad : " + \
str(WL_test_bad)
return scorecard