vm/port/include/tl/set_mt.h (143 lines of code) (raw):
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @author Intel, Evgueni Brevnov
*/
#ifndef TL_SET_MT_H
#define TL_SET_MT_H
// FIXME this should be thread safe vector implementation with
// custom memory allocator.
// But now this is just wrapper for the current STL vector implementation
#include <vector>
#include <algorithm> // strangely VC defines equal_range here
#include "log_macro.h"
#include "tl/allocator.h"
#include <apr_thread_mutex.h>
#include "tl/memory_pool.h"
namespace tl
{
/**
* A MemoryManager-based STL sorted vector container to use
* as a set.
*/
template<class T, class Allocator = MPAllocator<T> >
class vector_set_mt : public ::std::vector<T, Allocator>
{
typedef ::std::vector<T, Allocator> std_vector;
//MVM APN
typedef typename std_vector::size_type size_type;
apr_thread_mutex_t* mutex;
MemoryPool mem_pool;
public:
/**
* Lock container access. Use it before accessing iterators.
*/
void lock() {
apr_thread_mutex_lock(mutex);
}
/**
* Unock container access.
*/
void unlock() {
apr_thread_mutex_unlock(mutex);
}
#if (defined PLATFORM_POSIX) || (defined __INTEL_COMPILER)
//MVM APN
typedef typename std_vector::iterator iterator;
typedef typename std_vector::const_iterator const_iterator;
#endif
vector_set_mt(Allocator const& a = Allocator()) : std_vector(a) {
if (apr_thread_mutex_create(&mutex, APR_THREAD_MUTEX_NESTED, mem_pool.get_pool())) {
ABORT("Couldn't create mutex");
}
}
vector_set_mt(size_type n, const T& x = T(), Allocator const& a = Allocator()) : std_vector(n, x, a) {
if (apr_thread_mutex_create(&mutex, APR_THREAD_MUTEX_NESTED, mem_pool.get_pool())) {
ABORT("Couldn't create mutex");
}
}
vector_set_mt(const std_vector & a) : std_vector(a) {
if (apr_thread_mutex_create(&mutex, APR_THREAD_MUTEX_NESTED, mem_pool.get_pool())) {
ABORT("Couldn't create mutex");
}
::std::sort(std_vector::begin(), std_vector::end());
}
vector_set_mt& operator=(const std_vector & a) {
std_vector::operator=(a);
return *this;
};
vector_set_mt& operator=(const vector_set_mt & a) {
std_vector::operator=(a);
return *this;
};
::std::pair<iterator, bool> insert(const T& x) {
lock();
::std::pair<iterator, iterator> found = equal_range(x);
bool res = false;
if (found.first == found.second) {
std_vector::insert(found.second, x);
found = equal_range(x);
res = true;
}
unlock();
return ::std::pair<iterator,bool>(found.first, res);
};
void insert(iterator pos, const T& x) {
lock();
::std::pair<iterator, iterator> found = equal_range(x);
if (found.first == found.second) {
std_vector::insert(found.second, x);
}
unlock();
}
void insert(iterator i1, iterator i2) {
lock();
std_vector::insert(std_vector::end(), i1, i2);
::std::sort(std_vector::begin(), std_vector::end());
unlock();
}
size_type erase(const T& x) {
lock();
::std::pair<iterator, iterator> found= equal_range(x);
size_type delta = found.first - found.second;
if (delta != 0) {
std_vector::erase(found.first, found.second);
}
unlock();
return delta;
};
void erase(iterator __position) {
lock();
std_vector::erase(__position);
unlock();
};
void erase(iterator __first, iterator __last) {
lock();
std_vector::erase(__first, __last);
unlock();
}
void clear() {
lock();
std_vector::clear();
unlock();
};
size_type count(const T& x) const {
::std::pair<const_iterator, const_iterator> found= equal_range(x);
if (found.first != found.second) return 1;
else return 0;
}
const_iterator lower_bound(const T& x) const {
return ::std::lower_bound(std_vector::begin(), std_vector::end(), x);
}
iterator lower_bound(const T& x) {
return ::std::lower_bound(std_vector::begin(), std_vector::end(), x);
}
const_iterator upper_bound(const T& x) const {
return ::std::upper_bound(std_vector::begin(), std_vector::end(), x);
}
iterator upper_bound(const T& x) {
return ::std::upper_bound(std_vector::begin(), std_vector::end(), x);
}
::std::pair<const_iterator, const_iterator> equal_range(const T& x) const {
return ::std::equal_range(std_vector::begin(), std_vector::end(), x);
}
::std::pair<iterator, iterator> equal_range(const T& x) {
return ::std::equal_range(std_vector::begin(), std_vector::end(), x);
}
const_iterator find(const T& x) const {
::std::pair<const_iterator, const_iterator> found= equal_range(x);
if (found.first == found.second) return std_vector::end();
else return found.first;
}
iterator find(const T& x) {
::std::pair<iterator, iterator> found= equal_range(x);
if (found.first == found.second) return std_vector::end();
else return found.first;
}
bool has(const T& x) const {
::std::pair<const_iterator, const_iterator> found= equal_range(x);
return (found.first != found.second);
};
};
} // tl
#endif // TL_SET_MT_H