vm/port/include/tl/set_mt.h (143 lines of code) (raw):

/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /** * @author Intel, Evgueni Brevnov */ #ifndef TL_SET_MT_H #define TL_SET_MT_H // FIXME this should be thread safe vector implementation with // custom memory allocator. // But now this is just wrapper for the current STL vector implementation #include <vector> #include <algorithm> // strangely VC defines equal_range here #include "log_macro.h" #include "tl/allocator.h" #include <apr_thread_mutex.h> #include "tl/memory_pool.h" namespace tl { /** * A MemoryManager-based STL sorted vector container to use * as a set. */ template<class T, class Allocator = MPAllocator<T> > class vector_set_mt : public ::std::vector<T, Allocator> { typedef ::std::vector<T, Allocator> std_vector; //MVM APN typedef typename std_vector::size_type size_type; apr_thread_mutex_t* mutex; MemoryPool mem_pool; public: /** * Lock container access. Use it before accessing iterators. */ void lock() { apr_thread_mutex_lock(mutex); } /** * Unock container access. */ void unlock() { apr_thread_mutex_unlock(mutex); } #if (defined PLATFORM_POSIX) || (defined __INTEL_COMPILER) //MVM APN typedef typename std_vector::iterator iterator; typedef typename std_vector::const_iterator const_iterator; #endif vector_set_mt(Allocator const& a = Allocator()) : std_vector(a) { if (apr_thread_mutex_create(&mutex, APR_THREAD_MUTEX_NESTED, mem_pool.get_pool())) { ABORT("Couldn't create mutex"); } } vector_set_mt(size_type n, const T& x = T(), Allocator const& a = Allocator()) : std_vector(n, x, a) { if (apr_thread_mutex_create(&mutex, APR_THREAD_MUTEX_NESTED, mem_pool.get_pool())) { ABORT("Couldn't create mutex"); } } vector_set_mt(const std_vector & a) : std_vector(a) { if (apr_thread_mutex_create(&mutex, APR_THREAD_MUTEX_NESTED, mem_pool.get_pool())) { ABORT("Couldn't create mutex"); } ::std::sort(std_vector::begin(), std_vector::end()); } vector_set_mt& operator=(const std_vector & a) { std_vector::operator=(a); return *this; }; vector_set_mt& operator=(const vector_set_mt & a) { std_vector::operator=(a); return *this; }; ::std::pair<iterator, bool> insert(const T& x) { lock(); ::std::pair<iterator, iterator> found = equal_range(x); bool res = false; if (found.first == found.second) { std_vector::insert(found.second, x); found = equal_range(x); res = true; } unlock(); return ::std::pair<iterator,bool>(found.first, res); }; void insert(iterator pos, const T& x) { lock(); ::std::pair<iterator, iterator> found = equal_range(x); if (found.first == found.second) { std_vector::insert(found.second, x); } unlock(); } void insert(iterator i1, iterator i2) { lock(); std_vector::insert(std_vector::end(), i1, i2); ::std::sort(std_vector::begin(), std_vector::end()); unlock(); } size_type erase(const T& x) { lock(); ::std::pair<iterator, iterator> found= equal_range(x); size_type delta = found.first - found.second; if (delta != 0) { std_vector::erase(found.first, found.second); } unlock(); return delta; }; void erase(iterator __position) { lock(); std_vector::erase(__position); unlock(); }; void erase(iterator __first, iterator __last) { lock(); std_vector::erase(__first, __last); unlock(); } void clear() { lock(); std_vector::clear(); unlock(); }; size_type count(const T& x) const { ::std::pair<const_iterator, const_iterator> found= equal_range(x); if (found.first != found.second) return 1; else return 0; } const_iterator lower_bound(const T& x) const { return ::std::lower_bound(std_vector::begin(), std_vector::end(), x); } iterator lower_bound(const T& x) { return ::std::lower_bound(std_vector::begin(), std_vector::end(), x); } const_iterator upper_bound(const T& x) const { return ::std::upper_bound(std_vector::begin(), std_vector::end(), x); } iterator upper_bound(const T& x) { return ::std::upper_bound(std_vector::begin(), std_vector::end(), x); } ::std::pair<const_iterator, const_iterator> equal_range(const T& x) const { return ::std::equal_range(std_vector::begin(), std_vector::end(), x); } ::std::pair<iterator, iterator> equal_range(const T& x) { return ::std::equal_range(std_vector::begin(), std_vector::end(), x); } const_iterator find(const T& x) const { ::std::pair<const_iterator, const_iterator> found= equal_range(x); if (found.first == found.second) return std_vector::end(); else return found.first; } iterator find(const T& x) { ::std::pair<iterator, iterator> found= equal_range(x); if (found.first == found.second) return std_vector::end(); else return found.first; } bool has(const T& x) const { ::std::pair<const_iterator, const_iterator> found= equal_range(x); return (found.first != found.second); }; }; } // tl #endif // TL_SET_MT_H