in infrastructure-provisioning/src/general/lib/gcp/actions_lib.py [0:0]
def configure_local_spark(jars_dir, templates_dir, memory_type='driver'):
try:
# Checking if spark.jars parameter was generated previously
spark_jars_paths = None
if exists(datalab.fab.conn, '/opt/spark/conf/spark-defaults.conf'):
try:
spark_jars_paths = datalab.fab.conn.sudo('cat /opt/spark/conf/spark-defaults.conf | grep -e "^spark.jars " ').stdout.replace('\n','')
except:
spark_jars_paths = None
datalab.fab.conn.put(templates_dir + 'notebook_spark-defaults_local.conf', '/tmp/notebook_spark-defaults_local.conf')
if os.environ['application'] == 'zeppelin':
datalab.fab.conn.run('echo \"spark.jars $(ls -1 ' + jars_dir + '* | tr \'\\n\' \',\')\" >> /tmp/notebook_spark-defaults_local.conf')
datalab.fab.conn.sudo('\cp -f /tmp/notebook_spark-defaults_local.conf /opt/spark/conf/spark-defaults.conf')
if memory_type == 'driver':
spark_memory = datalab.fab.get_spark_memory()
datalab.fab.conn.sudo('sed -i "/spark.*.memory/d" /opt/spark/conf/spark-defaults.conf')
datalab.fab.conn.sudo('''bash -c 'echo "spark.{0}.memory {1}m" >> /opt/spark/conf/spark-defaults.conf' '''
.format(memory_type, spark_memory))
if not exists(datalab.fab.conn,'/opt/spark/conf/spark-env.sh'):
datalab.fab.conn.sudo('mv /opt/spark/conf/spark-env.sh.template /opt/spark/conf/spark-env.sh')
if os.environ['conf_deeplearning_cloud_ami'] == 'true' and os.environ['conf_cloud_provider'] == 'gcp' and os.environ['application'] == 'deeplearning':
java_home = '/usr/lib/jvm/adoptopenjdk-8-hotspot-amd64/jre'
else:
java_home = datalab.fab.conn.run(
"update-alternatives --query java | grep -o --color=never \'/.*/java-8.*/jre\'").stdout.splitlines()[0]
datalab.fab.conn.sudo(
'''bash -l -c 'echo "export JAVA_HOME={}" >> /opt/spark/conf/spark-env.sh' '''.format(java_home))
if 'spark_configurations' in os.environ:
datalab_header = datalab.fab.conn.sudo('cat /tmp/notebook_spark-defaults_local.conf | grep "^#"').stdout
spark_configurations = ast.literal_eval(os.environ['spark_configurations'])
new_spark_defaults = list()
spark_defaults = datalab.fab.conn.sudo('cat /opt/spark/conf/spark-defaults.conf').stdout
current_spark_properties = spark_defaults.split('\n')
for param in current_spark_properties:
if param.split(' ')[0] != '#':
for config in spark_configurations:
if config['Classification'] == 'spark-defaults':
for property in config['Properties']:
if property == param.split(' ')[0]:
param = property + ' ' + config['Properties'][property]
else:
new_spark_defaults.append(property + ' ' + config['Properties'][property])
new_spark_defaults.append(param)
new_spark_defaults = set(new_spark_defaults)
datalab.fab.conn.sudo('''bash -c 'echo "{}" > /opt/spark/conf/spark-defaults.conf' '''.format(datalab_header))
for prop in new_spark_defaults:
datalab.fab.conn.sudo('''bash -c 'echo "{}" >> /opt/spark/conf/spark-defaults.conf' '''.format(prop))
datalab.fab.conn.sudo('sed -i "/^\s*$/d" /opt/spark/conf/spark-defaults.conf')
if spark_jars_paths:
datalab.fab.conn.sudo('''bash -c 'echo "{}" >> /opt/spark/conf/spark-defaults.conf' '''.format(spark_jars_paths))
except Exception as err:
print('Error:', str(err))
sys.exit(1)