benchmark/benchtest_paillier.c.in (181 lines of code) (raw):

/* Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ /* Benchmark Paillier crypto system. */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <time.h> #include "randapi.h" #include "paillier.h" #include "amcl.h" #include "arch.h" #include "bench.h" #define MIN_TIME 5.0 #define MIN_ITERS 10 #define NTHREADS 2 int paillier(csprng *RNG) { int iterations; clock_t start; double elapsed; // Key material PAILLIER_private_key PRIV; PAILLIER_public_key PUB; // Plaintext to encrypt char ptin[NTHREADS][FS_2048]; octet PTIN[NTHREADS]; char ptout[NTHREADS][FS_2048]; octet PTOUT[NTHREADS]; // Constant value for multiplication char ptko[NTHREADS][FS_2048]; octet PTK[NTHREADS]; // Encrypted PTIN values char cto[NTHREADS][FS_4096]; octet CT[NTHREADS]; // Homomorphic multiplicaton of plaintext by a constant ciphertext char cta[NTHREADS][FS_4096]; octet CTA[NTHREADS]; // Homomorphic addition of ciphertext char cto3[FS_4096] = {0}; octet CT3 = {0,sizeof(cto3),cto3}; // Output plaintext of addition of homomorphic multiplication values char pto3[FS_2048] = {0}; octet PT3 = {sizeof(pto3),sizeof(pto3),pto3}; // Expected ouput is 26 / 0x1a i.e. 2*3 + 4*5 int values[NTHREADS] = {2,4}; int kvalues[NTHREADS] = {3,5}; // Initialize octets for(int i=0; i<NTHREADS; i++) { PTIN[i].max = FS_2048; PTIN[i].val = ptin[i]; OCT_clear(&PTIN[i]); PTOUT[i].max = FS_2048; PTOUT[i].val = ptout[i]; OCT_clear(&PTOUT[i]); PTK[i].max = FS_2048; PTK[i].val = ptko[i]; OCT_clear(&PTIN[i]); CT[i].max = FS_4096; CT[i].val = cto[i]; OCT_clear(&PTIN[i]); CTA[i].max = FS_4096; CTA[i].val = cta[i]; OCT_clear(&PTIN[i]); } printf("Timing info\n"); printf("===========\n"); // Generating public/private key pair iterations=0; start=clock(); do { PAILLIER_KEY_PAIR(RNG, NULL, NULL,&PUB, &PRIV); iterations++; elapsed=(double)(clock()-start)/(double)CLOCKS_PER_SEC; } while (elapsed<MIN_TIME || iterations<MIN_ITERS); elapsed=1000.0*elapsed/iterations; printf("PAILLIER_KEY_PAIR\t%8d iterations\t",iterations); printf("%8.2lf ms per iteration\n",elapsed); // Set plaintext values for(int i=0; i<NTHREADS; i++) { BIG_1024_58 pt[FFLEN_2048]; FF_2048_init(pt, values[i],FFLEN_2048); FF_2048_toOctet(&PTIN[i], pt, FFLEN_2048); BIG_1024_58 ptk[FFLEN_2048]; FF_2048_init(ptk, kvalues[i],FFLEN_2048); FF_2048_toOctet(&PTK[i], ptk, FFLEN_2048); } // Encrypt plaintext iterations=0; start=clock(); do { PAILLIER_ENCRYPT(RNG, &PUB, &PTIN[0], &CT[0], NULL); iterations++; elapsed=(double)(clock()-start)/(double)CLOCKS_PER_SEC; } while (elapsed<MIN_TIME || iterations<MIN_ITERS); elapsed=1000.0*elapsed/iterations; printf("PAILLIER_ENCRYPT\t%8d iterations\t",iterations); printf("%8.2lf ms per iteration\n",elapsed); PAILLIER_ENCRYPT(RNG, &PUB, &PTIN[1], &CT[1], NULL); // Multiply by constant iterations=0; start=clock(); do { PAILLIER_MULT(&PUB, &CT[0], &PTK[0], &CTA[0]); iterations++; elapsed=(double)(clock()-start)/(double)CLOCKS_PER_SEC; } while (elapsed<MIN_TIME || iterations<MIN_ITERS); elapsed=1000.0*elapsed/iterations; printf("PAILLIER_MULT\t\t%8d iterations\t",iterations); printf("%8.2lf ms per iteration\n",elapsed); PAILLIER_MULT(&PUB, &CT[1], &PTK[1], &CTA[1]); // Homomorphic addition iterations=0; start=clock(); do { PAILLIER_ADD(&PUB, &CTA[0], &CTA[1], &CT3); iterations++; elapsed=(double)(clock()-start)/(double)CLOCKS_PER_SEC; } while (elapsed<MIN_TIME || iterations<MIN_ITERS); elapsed=1000.0*elapsed/iterations; printf("PAILLIER_ADD\t\t%8d iterations\t",iterations); printf("%8.2lf ms per iteration\n",elapsed); // Homomorphic addition iterations=0; start=clock(); do { PAILLIER_DECRYPT(&PRIV, &CT3, &PT3); iterations++; elapsed=(double)(clock()-start)/(double)CLOCKS_PER_SEC; } while (elapsed<MIN_TIME || iterations<MIN_ITERS); elapsed=1000.0*elapsed/iterations; printf("PAILLIER_DECRYPT\t%8d iterations\t",iterations); printf("%8.2lf ms per iteration\n\n",elapsed); printf("Size info\n"); printf("=========\n"); printf("public key n\t%d bytes\n", FS_2048); printf("public key g\t%d bytes\n", FS_2048); printf("secret key lp\t%d bytes\n", HFS_2048); printf("secret key lq\t%d bytes\n", HFS_2048); printf("secret key mp\t%d bytes\n", HFS_2048); printf("secret key mq\t%d bytes\n", HFS_2048); printf("ciphertext\t%d bytes\n", FS_4096); #ifdef DEBUG printf("PT3: "); OCT_output(&PT3); printf("\n"); #endif // Clean sensitive memory PAILLIER_PRIVATE_KEY_KILL(&PRIV); OCT_clear(&PT3); for(int i=0; i<NTHREADS; i++) { OCT_clear(&PTIN[i]); OCT_clear(&PTOUT[i]); } return 0; } int main() { const char* seedHex = "78d0fb6705ce77dee47d03eb5b9c5d30"; char seed[16] = {0}; octet SEED = {sizeof(seed),sizeof(seed),seed}; printf("\nBechmark test Paillier"); print_system_info(); // CSPRNG csprng RNG; // fake random source OCT_fromHex(&SEED,seedHex); // initialise strong RNG CREATE_CSPRNG(&RNG,&SEED); paillier(&RNG); KILL_CSPRNG(&RNG); }