def calc()

in analysis/webservice/algorithms_spark/ClimMapSpark.py [0:0]


    def calc(self, computeOptions, **args):
        """

        :param computeOptions: StatsComputeOptions
        :param args: dict
        :return:
        """

        self._setQueryParams(computeOptions.get_dataset()[0],
                             (float(computeOptions.get_min_lat()),
                              float(computeOptions.get_max_lat()),
                              float(computeOptions.get_min_lon()),
                              float(computeOptions.get_max_lon())),
                             start_year=computeOptions.get_start_year(),
                             end_year=computeOptions.get_end_year(),
                             clim_month=computeOptions.get_clim_month())
        self._startTime = timegm((self._startYear, 1, 1, 0, 0, 0))
        self._endTime = timegm((self._endYear, 12, 31, 23, 59, 59))

        if 'CLIM' in self._ds:
            raise NexusProcessingException(reason="Cannot compute Latitude/Longitude Time Average map on a climatology",
                                           code=400)

        nparts_requested = computeOptions.get_nparts()

        nexus_tiles = self._find_global_tile_set()
        # print 'tiles:'
        # for tile in nexus_tiles:
        #     print tile.granule
        #     print tile.section_spec
        #     print 'lat:', tile.latitudes
        #     print 'lon:', tile.longitudes

        #                                                          nexus_tiles)
        if len(nexus_tiles) == 0:
            raise NoDataException(reason="No data found for selected timeframe")

        self.log.debug('Found {0} tiles'.format(len(nexus_tiles)))
        # for tile in nexus_tiles:
        #    print 'lats: ', tile.latitudes.compressed()
        #    print 'lons: ', tile.longitudes.compressed()
        self.log.debug('Using Native resolution: lat_res={0}, lon_res={1}'.format(self._latRes, self._lonRes))
        self.log.debug('nlats={0}, nlons={1}'.format(self._nlats, self._nlons))
        self.log.debug('center lat range = {0} to {1}'.format(self._minLatCent,
                                                              self._maxLatCent))
        self.log.debug('center lon range = {0} to {1}'.format(self._minLonCent,
                                                              self._maxLonCent))

        # Create array of tuples to pass to Spark map function
        nexus_tiles_spark = [[self._find_tile_bounds(t),
                              self._startTime, self._endTime,
                              self._ds] for t in nexus_tiles]
        # print 'nexus_tiles_spark = ', nexus_tiles_spark
        # Remove empty tiles (should have bounds set to None)
        bad_tile_inds = np.where([t[0] is None for t in nexus_tiles_spark])[0]
        for i in np.flipud(bad_tile_inds):
            del nexus_tiles_spark[i]
        num_nexus_tiles_spark = len(nexus_tiles_spark)
        self.log.debug('Created {0} spark tiles'.format(num_nexus_tiles_spark))

        # Expand Spark map tuple array by duplicating each entry N times,
        # where N is the number of ways we want the time dimension carved up.
        # (one partition per year in this case).
        num_years = self._endYear - self._startYear + 1
        nexus_tiles_spark = np.repeat(nexus_tiles_spark, num_years, axis=0)
        self.log.debug('repeated len(nexus_tiles_spark) = {0}'.format(len(nexus_tiles_spark)))

        # Set the time boundaries for each of the Spark map tuples.
        # Every Nth element in the array gets the same time bounds.
        spark_part_time_ranges = \
            np.repeat(np.array([[timegm((y, self._climMonth, 1, 0, 0, 0)),
                                 timegm((y, self._climMonth,
                                         monthrange(y, self._climMonth)[1],
                                         23, 59, 59))]
                                for y in range(self._startYear,
                                               self._endYear + 1)]),
                      num_nexus_tiles_spark,
                      axis=0).reshape((len(nexus_tiles_spark), 2))
        self.log.debug('spark_part_time_ranges={0}'.format(spark_part_time_ranges))
        nexus_tiles_spark[:, 1:3] = spark_part_time_ranges
        # print 'nexus_tiles_spark final = '
        # for i in range(len(nexus_tiles_spark)):
        #    print nexus_tiles_spark[i]

        # Launch Spark computations
        spark_nparts = self._spark_nparts(nparts_requested)
        self.log.info('Using {} partitions'.format(spark_nparts))
        rdd = self._sc.parallelize(nexus_tiles_spark, spark_nparts)
        sum_count_part = rdd.map(partial(self._map, self._tile_service_factory))
        sum_count = \
            sum_count_part.combineByKey(lambda val: val,
                                        lambda x, val: (x[0] + val[0],
                                                        x[1] + val[1]),
                                        lambda x, y: (x[0] + y[0], x[1] + y[1]))
        avg_tiles = \
            sum_count.map(lambda bounds_sum_tile_cnt_tile:
                          (bounds_sum_tile_cnt_tile[0], [[{'avg': (bounds_sum_tile_cnt_tile[1][0][y, x] / bounds_sum_tile_cnt_tile[1][1][y, x])
                          if (bounds_sum_tile_cnt_tile[1][1][y, x] > 0) else 0.,
                                      'cnt': bounds_sum_tile_cnt_tile[1][1][y, x]}
                                     for x in
                                     range(bounds_sum_tile_cnt_tile[1][0].shape[1])]
                                    for y in
                                    range(bounds_sum_tile_cnt_tile[1][0].shape[0])])).collect()

        # Combine subset results to produce global map.
        #
        # The tiles below are NOT Nexus objects.  They are tuples
        # with the time avg map data and lat-lon bounding box.
        a = np.zeros((self._nlats, self._nlons), dtype=np.float64, order='C')
        n = np.zeros((self._nlats, self._nlons), dtype=np.uint32, order='C')
        for tile in avg_tiles:
            if tile is not None:
                ((tile_min_lat, tile_max_lat, tile_min_lon, tile_max_lon),
                 tile_stats) = tile
                tile_data = np.ma.array(
                    [[tile_stats[y][x]['avg'] for x in range(len(tile_stats[0]))] for y in range(len(tile_stats))])
                tile_cnt = np.array(
                    [[tile_stats[y][x]['cnt'] for x in range(len(tile_stats[0]))] for y in range(len(tile_stats))])
                tile_data.mask = ~(tile_cnt.astype(bool))
                y0 = self._lat2ind(tile_min_lat)
                y1 = y0 + tile_data.shape[0] - 1
                x0 = self._lon2ind(tile_min_lon)
                x1 = x0 + tile_data.shape[1] - 1
                if np.any(np.logical_not(tile_data.mask)):
                    self.log.debug(
                        'writing tile lat {0}-{1}, lon {2}-{3}, map y {4}-{5}, map x {6}-{7}'.format(tile_min_lat,
                                                                                                     tile_max_lat,
                                                                                                     tile_min_lon,
                                                                                                     tile_max_lon, y0,
                                                                                                     y1, x0, x1))
                    a[y0:y1 + 1, x0:x1 + 1] = tile_data
                    n[y0:y1 + 1, x0:x1 + 1] = tile_cnt
                else:
                    self.log.debug(
                        'All pixels masked in tile lat {0}-{1}, lon {2}-{3}, map y {4}-{5}, map x {6}-{7}'.format(
                            tile_min_lat, tile_max_lat,
                            tile_min_lon, tile_max_lon,
                            y0, y1, x0, x1))

        # Store global map in a NetCDF file.
        self._create_nc_file(a, 'clmap.nc', 'val')

        # Create dict for JSON response
        results = [[{'avg': a[y, x], 'cnt': int(n[y, x]),
                     'lat': self._ind2lat(y), 'lon': self._ind2lon(x)}
                    for x in range(a.shape[1])] for y in range(a.shape[0])]

        return ClimMapSparkResults(results=results, meta={}, computeOptions=computeOptions)