def calc()

in analysis/webservice/algorithms_spark/CorrMapSpark.py [0:0]


    def calc(self, computeOptions, **args):

        self._setQueryParams(computeOptions.get_dataset(),
                             (float(computeOptions.get_min_lat()),
                              float(computeOptions.get_max_lat()),
                              float(computeOptions.get_min_lon()),
                              float(computeOptions.get_max_lon())),
                             computeOptions.get_start_time(),
                             computeOptions.get_end_time())
        nparts_requested = computeOptions.get_nparts()

        self.log.debug('ds = {0}'.format(self._ds))
        if not len(self._ds) == 2:
            raise NexusProcessingException(
                reason="Requires two datasets for comparison. Specify request parameter ds=Dataset_1,Dataset_2",
                code=400)
        if next(iter([clim for clim in self._ds if 'CLIM' in clim]), False):
            raise NexusProcessingException(reason="Cannot compute correlation on a climatology", code=400)

        nexus_tiles = self._find_global_tile_set()
        # print 'tiles:'
        # for tile in nexus_tiles:
        #     print tile.granule
        #     print tile.section_spec
        #     print 'lat:', tile.latitudes
        #     print 'lon:', tile.longitudes

        #                                                          nexus_tiles)
        if len(nexus_tiles) == 0:
            raise NoDataException(reason="No data found for selected timeframe")

        self.log.debug('Found {0} tiles'.format(len(nexus_tiles)))
        self.log.debug('Using Native resolution: lat_res={0}, lon_res={1}'.format(self._latRes, self._lonRes))
        self.log.debug('nlats={0}, nlons={1}'.format(self._nlats, self._nlons))

        daysinrange = self._get_tile_service().find_days_in_range_asc(self._minLat,
                                                                      self._maxLat,
                                                                      self._minLon,
                                                                      self._maxLon,
                                                                      self._ds[0],
                                                                      self._startTime,
                                                                      self._endTime)
        ndays = len(daysinrange)
        if ndays == 0:
            raise NoDataException(reason="No data found for selected timeframe")
        self.log.debug('Found {0} days in range'.format(ndays))
        for i, d in enumerate(daysinrange):
            self.log.debug('{0}, {1}'.format(i, datetime.utcfromtimestamp(d)))

        # Create array of tuples to pass to Spark map function
        nexus_tiles_spark = [[self._find_tile_bounds(t),
                              self._startTime, self._endTime,
                              self._ds] for t in nexus_tiles]

        # Remove empty tiles (should have bounds set to None)
        bad_tile_inds = np.where([t[0] is None for t in nexus_tiles_spark])[0]
        for i in np.flipud(bad_tile_inds):
            del nexus_tiles_spark[i]

        # Expand Spark map tuple array by duplicating each entry N times,
        # where N is the number of ways we want the time dimension carved up.
        # Set the time boundaries for each of the Spark map tuples so that
        # every Nth element in the array gets the same time bounds.
        max_time_parts = 72
        num_time_parts = min(max_time_parts, ndays)

        spark_part_time_ranges = np.tile(
            np.array([a[[0, -1]] for a in np.array_split(np.array(daysinrange), num_time_parts)]),
            (len(nexus_tiles_spark), 1))
        nexus_tiles_spark = np.repeat(nexus_tiles_spark, num_time_parts, axis=0)
        nexus_tiles_spark[:, 1:3] = spark_part_time_ranges

        # Launch Spark computations
        spark_nparts = self._spark_nparts(nparts_requested)
        self.log.info('Using {} partitions'.format(spark_nparts))

        rdd = self._sc.parallelize(nexus_tiles_spark, spark_nparts)
        sum_tiles_part = rdd.map(partial(self._map, self._tile_service_factory))
        # print "sum_tiles_part = ",sum_tiles_part.collect()
        sum_tiles = \
            sum_tiles_part.combineByKey(lambda val: val,
                                        lambda x, val: (x[0] + val[0],
                                                        x[1] + val[1],
                                                        x[2] + val[2],
                                                        x[3] + val[3],
                                                        x[4] + val[4],
                                                        x[5] + val[5]),
                                        lambda x, y: (x[0] + y[0],
                                                      x[1] + y[1],
                                                      x[2] + y[2],
                                                      x[3] + y[3],
                                                      x[4] + y[4],
                                                      x[5] + y[5]))
        # Convert the N (pixel-wise count) array for each tile to be a 
        # NumPy masked array.  That is the last array in the tuple of 
        # intermediate summation arrays.  Set mask to True if count is 0.
        sum_tiles = \
            sum_tiles.map(lambda bounds_sum_x_sum_y_sum_xx_sum_yy_sum_xy_n:
                          (bounds_sum_x_sum_y_sum_xx_sum_yy_sum_xy_n[0], (bounds_sum_x_sum_y_sum_xx_sum_yy_sum_xy_n[1][0], bounds_sum_x_sum_y_sum_xx_sum_yy_sum_xy_n[1][1], bounds_sum_x_sum_y_sum_xx_sum_yy_sum_xy_n[1][2], bounds_sum_x_sum_y_sum_xx_sum_yy_sum_xy_n[1][3], bounds_sum_x_sum_y_sum_xx_sum_yy_sum_xy_n[1][4],
                                    np.ma.array(bounds_sum_x_sum_y_sum_xx_sum_yy_sum_xy_n[1][5],
                                                mask=~(bounds_sum_x_sum_y_sum_xx_sum_yy_sum_xy_n[1][5].astype(bool))))))

        # print 'sum_tiles = ',sum_tiles.collect()

        # For each pixel in each tile compute an array of Pearson 
        # correlation coefficients.  The map function is called once 
        # per tile.  The result of this map operation is a list of 3-tuples of
        # (bounds, r, n) for each tile (r=Pearson correlation coefficient
        # and n=number of input values that went into each pixel with 
        # any masked values not included).
        corr_tiles = \
            sum_tiles.map(lambda bounds_sum_x_sum_y_sum_xx_sum_yy_sum_xy_n1:
                          (bounds_sum_x_sum_y_sum_xx_sum_yy_sum_xy_n1[0],
                           np.ma.array(((bounds_sum_x_sum_y_sum_xx_sum_yy_sum_xy_n1[1][4] - bounds_sum_x_sum_y_sum_xx_sum_yy_sum_xy_n1[1][0] * bounds_sum_x_sum_y_sum_xx_sum_yy_sum_xy_n1[1][1] / bounds_sum_x_sum_y_sum_xx_sum_yy_sum_xy_n1[1][5]) /
                                        np.sqrt((bounds_sum_x_sum_y_sum_xx_sum_yy_sum_xy_n1[1][2] - bounds_sum_x_sum_y_sum_xx_sum_yy_sum_xy_n1[1][0] * bounds_sum_x_sum_y_sum_xx_sum_yy_sum_xy_n1[1][0] / bounds_sum_x_sum_y_sum_xx_sum_yy_sum_xy_n1[1][5]) *
                                                (bounds_sum_x_sum_y_sum_xx_sum_yy_sum_xy_n1[1][3] - bounds_sum_x_sum_y_sum_xx_sum_yy_sum_xy_n1[1][1] * bounds_sum_x_sum_y_sum_xx_sum_yy_sum_xy_n1[1][1] / bounds_sum_x_sum_y_sum_xx_sum_yy_sum_xy_n1[1][5]))),
                                       mask=~(bounds_sum_x_sum_y_sum_xx_sum_yy_sum_xy_n1[1][5].astype(bool))),
                           bounds_sum_x_sum_y_sum_xx_sum_yy_sum_xy_n1[1][5])).collect()

        r = np.zeros((self._nlats, self._nlons), dtype=np.float64, order='C')
        n = np.zeros((self._nlats, self._nlons), dtype=np.uint32, order='C')

        # The tiles below are NOT Nexus objects.  They are tuples
        # with the following for each correlation map subset:
        # (1) lat-lon bounding box, (2) array of correlation r values, 
        # and (3) array of count n values.
        for tile in corr_tiles:
            ((tile_min_lat, tile_max_lat, tile_min_lon, tile_max_lon),
             tile_data, tile_cnt) = tile
            y0 = self._lat2ind(tile_min_lat)
            y1 = self._lat2ind(tile_max_lat)
            x0 = self._lon2ind(tile_min_lon)
            x1 = self._lon2ind(tile_max_lon)
            self.log.debug(
                'writing tile lat {0}-{1}, lon {2}-{3}, map y {4}-{5}, map x {6}-{7}'.format(tile_min_lat, tile_max_lat,
                                                                                             tile_min_lon, tile_max_lon,
                                                                                             y0, y1, x0, x1))
            r[y0:y1 + 1, x0:x1 + 1] = tile_data
            n[y0:y1 + 1, x0:x1 + 1] = tile_cnt

        # Store global map in a NetCDF file.
        self._create_nc_file(r, 'corrmap.nc', 'r')

        # Create dict for JSON response
        results = [[{'r': r[y, x], 'cnt': int(n[y, x]),
                     'lat': self._ind2lat(y), 'lon': self._ind2lon(x)}
                    for x in range(r.shape[1])] for y in range(r.shape[0])]

        return CorrelationResults(results)