analysis/webservice/algorithms_spark/TimeSeriesSpark.py (435 lines of code) (raw):

# Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import logging import traceback from io import StringIO from datetime import datetime from functools import partial import matplotlib.dates as mdates import matplotlib.pyplot as plt import numpy as np import pytz import shapely.geometry import shapely.wkt from backports.functools_lru_cache import lru_cache from pytz import timezone from scipy import stats from webservice import Filtering as filtering from webservice.NexusHandler import nexus_handler from webservice.algorithms_spark.NexusCalcSparkHandler import NexusCalcSparkHandler from webservice.algorithms_spark import utils from webservice.webmodel import NexusResults, NoDataException, NexusProcessingException EPOCH = timezone('UTC').localize(datetime(1970, 1, 1)) ISO_8601 = '%Y-%m-%dT%H:%M:%S%z' SECONDS_IN_ONE_YEAR = 31535999 logger = logging.getLogger(__name__) @nexus_handler class TimeSeriesSparkHandlerImpl(NexusCalcSparkHandler): name = "Time Series Spark" path = "/timeSeriesSpark" description = "Computes a time series plot between one or more datasets given an arbitrary geographical area and time range" params = { "ds": { "name": "Dataset", "type": "comma-delimited string", "description": "The dataset(s) Used to generate the Time Series. Required" }, "startTime": { "name": "Start Time", "type": "string", "description": "Starting time in format YYYY-MM-DDTHH:mm:ssZ or seconds since EPOCH. Required" }, "endTime": { "name": "End Time", "type": "string", "description": "Ending time in format YYYY-MM-DDTHH:mm:ssZ or seconds since EPOCH. Required" }, "b": { "name": "Bounding box", "type": "comma-delimited float", "description": "Minimum (Western) Longitude, Minimum (Southern) Latitude, " "Maximum (Eastern) Longitude, Maximum (Northern) Latitude. Required" }, "seasonalFilter": { "name": "Compute Seasonal Cycle Filter", "type": "boolean", "description": "Flag used to specify if the seasonal averages should be computed during " "Time Series computation. Optional (Default: False)" }, "lowPassFilter": { "name": "Compute Low Pass Filter", "type": "boolean", "description": "Flag used to specify if a low pass filter should be computed during " "Time Series computation. Optional (Default: True)" }, "spark": { "name": "Spark Configuration", "type": "comma-delimited value", "description": "Configuration used to launch in the Spark cluster. Value should be 3 elements separated by " "commas. 1) Spark Master 2) Number of Spark Executors 3) Number of Spark Partitions. Only " "Number of Spark Partitions is used by this function. Optional (Default: local,1,1)" } } singleton = True def parse_arguments(self, request): # Parse input arguments self.log.debug("Parsing arguments") try: ds = request.get_dataset() if type(ds) != list and type(ds) != tuple: ds = (ds,) except: raise NexusProcessingException( reason="'ds' argument is required. Must be comma-delimited string", code=400) # Do not allow time series on Climatology if next(iter([clim for clim in ds if 'CLIM' in clim]), False): raise NexusProcessingException(reason="Cannot compute time series on a climatology", code=400) try: bounding_polygon = request.get_bounding_polygon() request.get_min_lon = lambda: bounding_polygon.bounds[0] request.get_min_lat = lambda: bounding_polygon.bounds[1] request.get_max_lon = lambda: bounding_polygon.bounds[2] request.get_max_lat = lambda: bounding_polygon.bounds[3] except: try: west, south, east, north = request.get_min_lon(), request.get_min_lat(), \ request.get_max_lon(), request.get_max_lat() bounding_polygon = shapely.geometry.Polygon( [(west, south), (east, south), (east, north), (west, north), (west, south)]) except: raise NexusProcessingException( reason="'b' argument is required. Must be comma-delimited float formatted as " "Minimum (Western) Longitude, Minimum (Southern) Latitude, " "Maximum (Eastern) Longitude, Maximum (Northern) Latitude", code=400) try: start_time = request.get_start_datetime() except: raise NexusProcessingException( reason="'startTime' argument is required. Can be int value seconds from epoch or " "string format YYYY-MM-DDTHH:mm:ssZ", code=400) try: end_time = request.get_end_datetime() except: raise NexusProcessingException( reason="'endTime' argument is required. Can be int value seconds from epoch or " "string format YYYY-MM-DDTHH:mm:ssZ", code=400) if start_time > end_time: raise NexusProcessingException( reason="The starting time must be before the ending time. Received startTime: %s, endTime: %s" % ( request.get_start_datetime().strftime(ISO_8601), request.get_end_datetime().strftime(ISO_8601)), code=400) apply_seasonal_cycle_filter = request.get_apply_seasonal_cycle_filter(default=False) apply_low_pass_filter = request.get_apply_low_pass_filter() start_seconds_from_epoch = int((start_time - EPOCH).total_seconds()) end_seconds_from_epoch = int((end_time - EPOCH).total_seconds()) nparts_requested = request.get_nparts() normalize_dates = request.get_normalize_dates() return ds, bounding_polygon, start_seconds_from_epoch, end_seconds_from_epoch, apply_seasonal_cycle_filter, apply_low_pass_filter, nparts_requested, normalize_dates def calc(self, request, **args): """ :param request: StatsComputeOptions :param args: dict :return: """ start_time = datetime.now() ds, bounding_polygon, start_seconds_from_epoch, end_seconds_from_epoch, apply_seasonal_cycle_filter, apply_low_pass_filter, nparts_requested, normalize_dates = self.parse_arguments( request) metrics_record = self._create_metrics_record() resultsRaw = [] for shortName in ds: the_time = datetime.now() daysinrange = self._get_tile_service().find_days_in_range_asc(bounding_polygon.bounds[1], bounding_polygon.bounds[3], bounding_polygon.bounds[0], bounding_polygon.bounds[2], shortName, start_seconds_from_epoch, end_seconds_from_epoch, metrics_callback=metrics_record.record_metrics) self.log.info("Finding days in range took %s for dataset %s" % (str(datetime.now() - the_time), shortName)) ndays = len(daysinrange) if ndays == 0: raise NoDataException(reason="No data found for selected timeframe") self.log.debug('Found {0} days in range'.format(ndays)) for i, d in enumerate(daysinrange): self.log.debug('{0}, {1}'.format(i, datetime.utcfromtimestamp(d))) spark_nparts = self._spark_nparts(nparts_requested) self.log.info('Using {} partitions'.format(spark_nparts)) results, meta = spark_driver(daysinrange, bounding_polygon, shortName, self._tile_service_factory, metrics_record.record_metrics, normalize_dates, spark_nparts=spark_nparts, sc=self._sc) if apply_seasonal_cycle_filter: the_time = datetime.now() # get time series for _clim dataset shortName_clim = shortName + "_clim" daysinrange_clim = self._get_tile_service().find_days_in_range_asc(bounding_polygon.bounds[1], bounding_polygon.bounds[3], bounding_polygon.bounds[0], bounding_polygon.bounds[2], shortName_clim, 0, SECONDS_IN_ONE_YEAR, metrics_callback=metrics_record.record_metrics) if len(daysinrange_clim) == 0: raise NexusProcessingException(reason="There is no climatology data present for dataset " + shortName + ".") results_clim, _ = spark_driver(daysinrange_clim, bounding_polygon, shortName_clim, self._tile_service_factory, metrics_record.record_metrics, normalize_dates=False, spark_nparts=spark_nparts, sc=self._sc) clim_indexed_by_month = {datetime.utcfromtimestamp(result['time']).month: result for result in results_clim} if len(clim_indexed_by_month) < 12: raise NexusProcessingException(reason="There are only " + len(clim_indexed_by_month) + " months of climatology data for dataset " + shortName + ". A full year of climatology data is required for computing deseasoned timeseries.") for result in results: month = datetime.utcfromtimestamp(result['time']).month result['meanSeasonal'] = result['mean'] - clim_indexed_by_month[month]['mean'] result['minSeasonal'] = result['min'] - clim_indexed_by_month[month]['min'] result['maxSeasonal'] = result['max'] - clim_indexed_by_month[month]['max'] self.log.info( "Seasonal calculation took %s for dataset %s" % (str(datetime.now() - the_time), shortName)) the_time = datetime.now() filtering.applyAllFiltersOnField(results, 'mean', applySeasonal=False, applyLowPass=apply_low_pass_filter) filtering.applyAllFiltersOnField(results, 'max', applySeasonal=False, applyLowPass=apply_low_pass_filter) filtering.applyAllFiltersOnField(results, 'min', applySeasonal=False, applyLowPass=apply_low_pass_filter) if apply_seasonal_cycle_filter and apply_low_pass_filter: try: filtering.applyFiltersOnField(results, 'meanSeasonal', applySeasonal=False, applyLowPass=True, append="LowPass") filtering.applyFiltersOnField(results, 'minSeasonal', applySeasonal=False, applyLowPass=True, append="LowPass") filtering.applyFiltersOnField(results, 'maxSeasonal', applySeasonal=False, applyLowPass=True, append="LowPass") except Exception as e: # If it doesn't work log the error but ignore it tb = traceback.format_exc() self.log.warn("Error calculating SeasonalLowPass filter:\n%s" % tb) resultsRaw.append([results, meta]) self.log.info( "LowPass filter calculation took %s for dataset %s" % (str(datetime.now() - the_time), shortName)) the_time = datetime.now() self._create_nc_file_time1d(np.array(results), 'ts.nc', 'mean', fill=-9999.) self.log.info( "NetCDF generation took %s for dataset %s" % (str(datetime.now() - the_time), shortName)) the_time = datetime.now() results = self._mergeResults(resultsRaw) if len(ds) == 2: try: stats = TimeSeriesSparkHandlerImpl.calculate_comparison_stats(results) except Exception: stats = {} tb = traceback.format_exc() self.log.warn("Error when calculating comparison stats:\n%s" % tb) else: stats = {} meta = [] for singleRes in resultsRaw: meta.append(singleRes[1]) res = TimeSeriesResults(results=results, meta=meta, stats=stats, computeOptions=None, minLat=bounding_polygon.bounds[1], maxLat=bounding_polygon.bounds[3], minLon=bounding_polygon.bounds[0], maxLon=bounding_polygon.bounds[2], ds=ds, startTime=start_seconds_from_epoch, endTime=end_seconds_from_epoch) total_duration = (datetime.now() - start_time).total_seconds() metrics_record.record_metrics(actual_time=total_duration) metrics_record.print_metrics(logger) self.log.info("Merging results and calculating comparisons took %s" % (str(datetime.now() - the_time))) return res @lru_cache() def get_min_max_date(self, ds=None): min_date = pytz.timezone('UTC').localize( datetime.utcfromtimestamp(self._get_tile_service().get_min_time([], ds=ds))) max_date = pytz.timezone('UTC').localize( datetime.utcfromtimestamp(self._get_tile_service().get_max_time([], ds=ds))) return min_date.date(), max_date.date() @staticmethod def calculate_comparison_stats(results): xy = [[], []] for item in results: if len(item) == 2: xy[item[0]["ds"]].append(item[0]["mean"]) xy[item[1]["ds"]].append(item[1]["mean"]) slope, intercept, r_value, p_value, std_err = stats.linregress(xy[0], xy[1]) if any(np.isnan([slope, intercept, r_value, p_value, std_err])): comparisonStats = {} else: comparisonStats = { "slope": slope, "intercept": intercept, "r": r_value, "p": p_value, "err": std_err } return comparisonStats class TimeSeriesResults(NexusResults): LINE_PLOT = "line" SCATTER_PLOT = "scatter" __SERIES_COLORS = ['red', 'blue'] def toImage(self): type = self.computeOptions().get_plot_type() if type == TimeSeriesResults.LINE_PLOT or type == "default": return self.createLinePlot() elif type == TimeSeriesResults.SCATTER_PLOT: return self.createScatterPlot() else: raise Exception("Invalid or unsupported time series plot specified") def createScatterPlot(self): timeSeries = [] series0 = [] series1 = [] res = self.results() meta = self.meta() plotSeries = self.computeOptions().get_plot_series() if self.computeOptions is not None else None if plotSeries is None: plotSeries = "mean" for m in res: if len(m) == 2: timeSeries.append(datetime.fromtimestamp(m[0]["time"] / 1000)) series0.append(m[0][plotSeries]) series1.append(m[1][plotSeries]) title = ', '.join(set([m['title'] for m in meta])) sources = ', '.join(set([m['source'] for m in meta])) dateRange = "%s - %s" % (timeSeries[0].strftime('%b %Y'), timeSeries[-1].strftime('%b %Y')) fig, ax = plt.subplots() fig.set_size_inches(11.0, 8.5) ax.scatter(series0, series1, alpha=0.5) ax.set_xlabel(meta[0]['units']) ax.set_ylabel(meta[1]['units']) ax.set_title("%s\n%s\n%s" % (title, sources, dateRange)) par = np.polyfit(series0, series1, 1, full=True) slope = par[0][0] intercept = par[0][1] xl = [min(series0), max(series0)] yl = [slope * xx + intercept for xx in xl] plt.plot(xl, yl, '-r') # r = self.stats()["r"] # plt.text(0.5, 0.5, "r = foo") ax.grid(True) fig.tight_layout() sio = StringIO() plt.savefig(sio, format='png') return sio.getvalue() def createLinePlot(self): nseries = len(self.meta()) res = self.results() meta = self.meta() timeSeries = [datetime.fromtimestamp(m[0]["time"] / 1000) for m in res] means = [[np.nan] * len(res) for n in range(0, nseries)] plotSeries = self.computeOptions().get_plot_series() if self.computeOptions is not None else None if plotSeries is None: plotSeries = "mean" for n in range(0, len(res)): timeSlot = res[n] for seriesValues in timeSlot: means[seriesValues['ds']][n] = seriesValues[plotSeries] x = timeSeries fig, axMain = plt.subplots() fig.set_size_inches(11.0, 8.5) fig.autofmt_xdate() title = ', '.join(set([m['title'] for m in meta])) sources = ', '.join(set([m['source'] for m in meta])) dateRange = "%s - %s" % (timeSeries[0].strftime('%b %Y'), timeSeries[-1].strftime('%b %Y')) axMain.set_title("%s\n%s\n%s" % (title, sources, dateRange)) axMain.set_xlabel('Date') axMain.grid(True) axMain.xaxis.set_major_locator(mdates.YearLocator()) axMain.xaxis.set_major_formatter(mdates.DateFormatter('%b %Y')) axMain.xaxis.set_minor_locator(mdates.MonthLocator()) axMain.format_xdata = mdates.DateFormatter('%Y-%m-%d') plots = [] for n in range(0, nseries): if n == 0: ax = axMain else: ax = ax.twinx() plots += ax.plot(x, means[n], color=self.__SERIES_COLORS[n], zorder=10, linewidth=3, label=meta[n]['title']) ax.set_ylabel(meta[n]['units']) labs = [l.get_label() for l in plots] axMain.legend(plots, labs, loc=0) sio = StringIO() plt.savefig(sio, format='png') return sio.getvalue() def spark_driver(daysinrange, bounding_polygon, ds, tile_service_factory, metrics_callback, normalize_dates, fill=-9999., spark_nparts=1, sc=None): nexus_tiles_spark = [(bounding_polygon, ds, list(daysinrange_part), fill) for daysinrange_part in np.array_split(daysinrange, spark_nparts)] # Launch Spark computations rdd = sc.parallelize(nexus_tiles_spark, spark_nparts) metrics_callback(partitions=rdd.getNumPartitions()) results = rdd.flatMap(partial(calc_average_on_day, tile_service_factory, metrics_callback, normalize_dates)).collect() results = list(itertools.chain.from_iterable(results)) results = sorted(results, key=lambda entry: entry["time"]) return results, {} def calc_average_on_day(tile_service_factory, metrics_callback, normalize_dates, tile_in_spark): import shapely.wkt from datetime import datetime from pytz import timezone ISO_8601 = '%Y-%m-%dT%H:%M:%S%z' (bounding_polygon, dataset, timestamps, fill) = tile_in_spark if len(timestamps) == 0: return [] tile_service = tile_service_factory() ds1_nexus_tiles = \ tile_service.get_tiles_bounded_by_box(bounding_polygon.bounds[1], bounding_polygon.bounds[3], bounding_polygon.bounds[0], bounding_polygon.bounds[2], dataset, timestamps[0], timestamps[-1], rows=5000, metrics_callback=metrics_callback) calculation_start = datetime.now() tile_dict = {} for timeinseconds in timestamps: tile_dict[timeinseconds] = [] for i in range(len(ds1_nexus_tiles)): tile = ds1_nexus_tiles[i] tile_dict[tile.times[0]].append(i) stats_arr = [] for timeinseconds in timestamps: cur_tile_list = tile_dict[timeinseconds] if len(cur_tile_list) == 0: continue tile_data_agg = \ np.ma.array(data=np.hstack([ds1_nexus_tiles[i].data.data.flatten() for i in cur_tile_list if (ds1_nexus_tiles[i].times[0] == timeinseconds)]), mask=np.hstack([ds1_nexus_tiles[i].data.mask.flatten() for i in cur_tile_list if (ds1_nexus_tiles[i].times[0] == timeinseconds)])) lats_agg = np.hstack([np.repeat(ds1_nexus_tiles[i].latitudes, len(ds1_nexus_tiles[i].longitudes)) for i in cur_tile_list if (ds1_nexus_tiles[i].times[0] == timeinseconds)]) if (len(tile_data_agg) == 0) or tile_data_agg.mask.all(): continue else: data_min = np.ma.min(tile_data_agg) data_max = np.ma.max(tile_data_agg) daily_mean = \ np.ma.average(tile_data_agg, weights=np.cos(np.radians(lats_agg))).item() data_count = np.ma.count(tile_data_agg) data_std = np.ma.std(tile_data_agg) # Return Stats by day if normalize_dates: timeinseconds = utils.normalize_date(timeinseconds) stat = { 'min': data_min, 'max': data_max, 'mean': daily_mean, 'cnt': data_count, 'std': data_std, 'time': int(timeinseconds), 'iso_time': datetime.utcfromtimestamp(int(timeinseconds)).replace(tzinfo=timezone('UTC')).strftime(ISO_8601) } stats_arr.append(stat) calculation_time = (datetime.now() - calculation_start).total_seconds() metrics_callback(calculation=calculation_time) return [stats_arr]