def process_nexus_tile()

in sdap/processors/tilesummarizingprocessor.py [0:0]


    def process_nexus_tile(self, nexus_tile):
        the_tile_type = nexus_tile.tile.WhichOneof("tile_type")

        the_tile_data = getattr(nexus_tile.tile, the_tile_type)

        latitudes = numpy.ma.masked_invalid(from_shaped_array(the_tile_data.latitude))
        longitudes = numpy.ma.masked_invalid(from_shaped_array(the_tile_data.longitude))

        data = from_shaped_array(the_tile_data.variable_data)

        if nexus_tile.HasField("summary"):
            tilesummary = nexus_tile.summary
        else:
            tilesummary = nexusproto.TileSummary()

        tilesummary.bbox.lat_min = numpy.nanmin(latitudes).item()
        tilesummary.bbox.lat_max = numpy.nanmax(latitudes).item()
        tilesummary.bbox.lon_min = numpy.nanmin(longitudes).item()
        tilesummary.bbox.lon_max = numpy.nanmax(longitudes).item()

        tilesummary.stats.min = numpy.nanmin(data).item()
        tilesummary.stats.max = numpy.nanmax(data).item()

        # In order to accurately calculate the average we need to weight the data based on the cosine of its latitude
        # This is handled slightly differently for swath vs. grid data
        if the_tile_type == 'swath_tile':
            # For Swath tiles, len(data) == len(latitudes) == len(longitudes). So we can simply weight each element in the
            # data array
            tilesummary.stats.mean = numpy.ma.average(numpy.ma.masked_invalid(data),
                                                      weights=numpy.cos(numpy.radians(latitudes))).item()
        elif the_tile_type == 'grid_tile':
            # Grid tiles need to repeat the weight for every longitude
            # TODO This assumes data axis' are ordered as latitude x longitude
            tilesummary.stats.mean = numpy.ma.average(numpy.ma.masked_invalid(data).flatten(),
                                                      weights=numpy.cos(
                                                          numpy.radians(
                                                              numpy.repeat(latitudes, len(longitudes))))).item()
        else:
            # Default to simple average with no weighting
            tilesummary.stats.mean = numpy.nanmean(data).item()

        tilesummary.stats.count = data.size - numpy.count_nonzero(numpy.isnan(data))

        try:
            min_time, max_time = find_time_min_max(the_tile_data)
            tilesummary.stats.min_time = min_time
            tilesummary.stats.max_time = max_time
        except NoTimeException:
            pass

        try:
            tilesummary.data_var_name = self.stored_var_name
        except TypeError:
            pass

        nexus_tile.summary.CopyFrom(tilesummary)
        yield nexus_tile