gbdt-rs/xgb-data/xgb_binary_logitraw/xg.py (43 lines of code) (raw):

from __future__ import print_function import xgboost as xgb import numpy as np import time params = { 'booster': 'gbtree', 'objective': 'binary:logitraw', 'eta': 0.1, 'gamma': 1.0, 'max_depth': 3, 'min_child_weight': 1, 'seed': 1000, 'nthread': 1, } def train(): xgb_train = xgb.DMatrix("./agaricus.txt.train") plst = list(params.items()) print("Training started.") t0 = time.time() model = xgb.train(plst, xgb_train, num_boost_round=50, ) print("%.3fs taken for training" % (time.time() - t0)) print("Saving model...") model.save_model("xgb.model") def predict(): t0 = time.time() model = xgb.Booster() model.load_model("xgb.model") t1 = time.time() print("%.3fs taken for load_model" % (t1 - t0)) t0 = time.time() xgb_test = xgb.DMatrix("./agaricus.txt.test") t1 = time.time() print("%.3fs taken for load_data" % (t1 - t0)) t0 = time.time() preds = model.predict(xgb_test) t1 = time.time() print("%.3fs taken for predicting" % (t1 - t0)) print("Saving results...") np.savetxt("./pred.csv", preds, delimiter=",") if __name__ == "__main__": train() predict()