fn iris_sample()

in samplecode/machine-learning/enclave/src/lib.rs [97:289]


fn iris_sample() {
    println!("IRIS classification sample:");
    // Set the layer sizes - from input to output
    let layers = &[4,10,10,1];

    println!("Layers (Input - Hiddeen - Output) {:?}", layers);
    const SAMPLES: usize = 10000000;
    let inputs: Vec<f64> = vec![5.1, 3.5, 1.4, 0.2,
                                    4.9, 3.0, 1.4, 0.2,
                                    4.7, 3.2, 1.3, 0.2,
                                    4.6, 3.1, 1.5, 0.2,
                                    5.0, 3.6, 1.4, 0.2,
                                    5.4, 3.9, 1.7, 0.4,
                                    4.6, 3.4, 1.4, 0.3,
                                    5.0, 3.4, 1.5, 0.2,
                                    4.4, 2.9, 1.4, 0.2,
                                    4.9, 3.1, 1.5, 0.1,
                                    5.4, 3.7, 1.5, 0.2,
                                    4.8, 3.4, 1.6, 0.2,
                                    4.8, 3.0, 1.4, 0.1,
                                    4.3, 3.0, 1.1, 0.1,
                                    5.8, 4.0, 1.2, 0.2,
                                    5.7, 4.4, 1.5, 0.4,
                                    5.4, 3.9, 1.3, 0.4,
                                    5.1, 3.5, 1.4, 0.3,
                                    5.7, 3.8, 1.7, 0.3,
                                    5.1, 3.8, 1.5, 0.3,
                                    5.4, 3.4, 1.7, 0.2,
                                    5.1, 3.7, 1.5, 0.4,
                                    4.6, 3.6, 1.0, 0.2,
                                    5.1, 3.3, 1.7, 0.5,
                                    4.8, 3.4, 1.9, 0.2,
                                    5.0, 3.0, 1.6, 0.2,
                                    5.0, 3.4, 1.6, 0.4,
                                    5.2, 3.5, 1.5, 0.2,
                                    5.2, 3.4, 1.4, 0.2,
                                    4.7, 3.2, 1.6, 0.2,
                                    4.8, 3.1, 1.6, 0.2,
                                    5.4, 3.4, 1.5, 0.4,
                                    5.2, 4.1, 1.5, 0.1,
                                    5.5, 4.2, 1.4, 0.2,
                                    4.9, 3.1, 1.5, 0.1,
                                    5.0, 3.2, 1.2, 0.2,
                                    5.5, 3.5, 1.3, 0.2,
                                    4.9, 3.1, 1.5, 0.1,
                                    4.4, 3.0, 1.3, 0.2,
                                    5.1, 3.4, 1.5, 0.2,
                                    5.0, 3.5, 1.3, 0.3,
                                    4.5, 2.3, 1.3, 0.3,
                                    4.4, 3.2, 1.3, 0.2,
                                    5.0, 3.5, 1.6, 0.6,
                                    5.1, 3.8, 1.9, 0.4,
                                    4.8, 3.0, 1.4, 0.3,
                                    5.1, 3.8, 1.6, 0.2,
                                    4.6, 3.2, 1.4, 0.2,
                                    5.3, 3.7, 1.5, 0.2,
                                    5.0, 3.3, 1.4, 0.2,
                                    7.0, 3.2, 4.7, 1.4,
                                    6.4, 3.2, 4.5, 1.5,
                                    6.9, 3.1, 4.9, 1.5,
                                    5.5, 2.3, 4.0, 1.3,
                                    6.5, 2.8, 4.6, 1.5,
                                    5.7, 2.8, 4.5, 1.3,
                                    6.3, 3.3, 4.7, 1.6,
                                    4.9, 2.4, 3.3, 1.0,
                                    6.6, 2.9, 4.6, 1.3,
                                    5.2, 2.7, 3.9, 1.4,
                                    5.0, 2.0, 3.5, 1.0,
                                    5.9, 3.0, 4.2, 1.5,
                                    6.0, 2.2, 4.0, 1.0,
                                    6.1, 2.9, 4.7, 1.4,
                                    5.6, 2.9, 3.6, 1.3,
                                    6.7, 3.1, 4.4, 1.4,
                                    5.6, 3.0, 4.5, 1.5,
                                    5.8, 2.7, 4.1, 1.0,
                                    6.2, 2.2, 4.5, 1.5,
                                    5.6, 2.5, 3.9, 1.1,
                                    5.9, 3.2, 4.8, 1.8,
                                    6.1, 2.8, 4.0, 1.3,
                                    6.3, 2.5, 4.9, 1.5,
                                    6.1, 2.8, 4.7, 1.2,
                                    6.4, 2.9, 4.3, 1.3,
                                    6.6, 3.0, 4.4, 1.4,
                                    6.8, 2.8, 4.8, 1.4,
                                    6.7, 3.0, 5.0, 1.7,
                                    6.0, 2.9, 4.5, 1.5,
                                    5.7, 2.6, 3.5, 1.0,
                                    5.5, 2.4, 3.8, 1.1,
                                    5.5, 2.4, 3.7, 1.0,
                                    5.8, 2.7, 3.9, 1.2,
                                    6.0, 2.7, 5.1, 1.6,
                                    5.4, 3.0, 4.5, 1.5,
                                    6.0, 3.4, 4.5, 1.6,
                                    6.7, 3.1, 4.7, 1.5,
                                    6.3, 2.3, 4.4, 1.3,
                                    5.6, 3.0, 4.1, 1.3,
                                    5.5, 2.5, 4.0, 1.3,
                                    5.5, 2.6, 4.4, 1.2,
                                    6.1, 3.0, 4.6, 1.4,
                                    5.8, 2.6, 4.0, 1.2,
                                    5.0, 2.3, 3.3, 1.0,
                                    5.6, 2.7, 4.2, 1.3,
                                    5.7, 3.0, 4.2, 1.2,
                                    5.7, 2.9, 4.2, 1.3,
                                    6.2, 2.9, 4.3, 1.3,
                                    5.1, 2.5, 3.0, 1.1,
                                    5.7, 2.8, 4.1, 1.3,
                                    6.3, 3.3, 6.0, 2.5,
                                    5.8, 2.7, 5.1, 1.9,
                                    7.1, 3.0, 5.9, 2.1,
                                    6.3, 2.9, 5.6, 1.8,
                                    6.5, 3.0, 5.8, 2.2,
                                    7.6, 3.0, 6.6, 2.1,
                                    4.9, 2.5, 4.5, 1.7,
                                    7.3, 2.9, 6.3, 1.8,
                                    6.7, 2.5, 5.8, 1.8,
                                    7.2, 3.6, 6.1, 2.5,
                                    6.5, 3.2, 5.1, 2.0,
                                    6.4, 2.7, 5.3, 1.9,
                                    6.8, 3.0, 5.5, 2.1,
                                    5.7, 2.5, 5.0, 2.0,
                                    5.8, 2.8, 5.1, 2.4,
                                    6.4, 3.2, 5.3, 2.3,
                                    6.5, 3.0, 5.5, 1.8,
                                    7.7, 3.8, 6.7, 2.2,
                                    7.7, 2.6, 6.9, 2.3,
                                    6.0, 2.2, 5.0, 1.5,
                                    6.9, 3.2, 5.7, 2.3,
                                    5.6, 2.8, 4.9, 2.0,
                                    7.7, 2.8, 6.7, 2.0,
                                    6.3, 2.7, 4.9, 1.8,
                                    6.7, 3.3, 5.7, 2.1,
                                    7.2, 3.2, 6.0, 1.8,
                                    6.2, 2.8, 4.8, 1.8,
                                    6.1, 3.0, 4.9, 1.8,
                                    6.4, 2.8, 5.6, 2.1,
                                    7.2, 3.0, 5.8, 1.6,
                                    7.4, 2.8, 6.1, 1.9,
                                    7.9, 3.8, 6.4, 2.0,
                                    6.4, 2.8, 5.6, 2.2,
                                    6.3, 2.8, 5.1, 1.5,
                                    6.1, 2.6, 5.6, 1.4,
                                    7.7, 3.0, 6.1, 2.3,
                                    6.3, 3.4, 5.6, 2.4,
                                    6.4, 3.1, 5.5, 1.8,
                                    6.0, 3.0, 4.8, 1.8,
                                    6.9, 3.1, 5.4, 2.1,
                                    6.7, 3.1, 5.6, 2.4,
                                    6.9, 3.1, 5.1, 2.3,
                                    5.8, 2.7, 5.1, 1.9,
                                    6.8, 3.2, 5.9, 2.3,
                                    6.7, 3.3, 5.7, 2.5,
                                    6.7, 3.0, 5.2, 2.3,
                                    6.3, 2.5, 5.0, 1.9,
                                    6.5, 3.0, 5.2, 2.0,
                                    6.2, 3.4, 5.4, 2.3,
                                    5.9, 3.0, 5.1, 1.8];

    let target: Vec<usize> = vec![0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                                  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                                  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                                  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                                  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
                                  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2];


    let target: Vec<f64> = target.into_iter().map(|x| x as f64).collect();

    let inputs = Matrix::new(150, 4, inputs);
    let targets = Matrix::new(150, 1, target);

    // Choose the BCE criterion with L2 regularization (`lambda=0.1`).
    let criterion = BCECriterion::new(Regularization::L2(0.1));

    // We will just use the default stochastic gradient descent.
    let mut model = NeuralNet::mlp(layers, criterion, StochasticGD::default(), Sigmoid);

    // Train the model!
    model.train(&inputs, &targets).unwrap();

    let test_cases = vec![ 5.9, 3.0, 5.1, 1.8];
    let test_inputs = Matrix::new(test_cases.len() / 4, 4, test_cases);

    println!("Infering {} times", SAMPLES);
    // start timer
    let now = SystemTime::now();
    for _ in 0..SAMPLES {
        // Predict
        let _ = model.predict(&test_inputs);
    }
    // end timer
    println!("Infer {} times: {:?}", SAMPLES, now.elapsed().unwrap());
}