access_control_module/interpretation/I_SysId.thy (133 lines of code) (raw):
(*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*)
theory I_SysId
imports Main "../SysId"
begin
typedef ResrcId = "{x. x \<ge> (0::nat) \<and> x < 100}"
proof
show "(0::nat) \<in> {x. 0 \<le> x \<and> x < 100}"
proof
show"(0::nat) \<le> 0 \<and> 0 < (100::nat)"
proof
show"(0::nat) \<le> 0" by auto
next
show"(0::nat) < 100" by auto
qed
qed
qed
definition noresrcid::ResrcId where "noresrcid\<equiv>Abs_ResrcId 0"
definition valid_resrcid::"ResrcId\<Rightarrow>bool" where
"valid_resrcid rid\<equiv>(rid\<noteq>noresrcid)"
lemma RESRCIDLLR1:"rid\<noteq>noresrcid\<Longrightarrow>valid_resrcid rid"
proof -
assume "rid\<noteq>noresrcid"
from this show "valid_resrcid rid" by(auto simp:valid_resrcid_def)
qed
lemma RESRCIDLLR2:"rid=noresrcid\<Longrightarrow>\<not>valid_resrcid rid"
proof
assume 0:"rid = noresrcid"
assume 1:"valid_resrcid rid"
from 1 have 2:"rid\<noteq>noresrcid" by(auto simp:valid_resrcid_def)
from 0 2 show False by auto
qed
typedef UsrId = "{x. x \<ge> (100::nat) \<and> x < 200}"
proof
show "(100::nat) \<in> {x. 100 \<le> x \<and> x < 200}"
proof
show"(100::nat) \<le> 100 \<and> 100 < (200::nat)"
proof
show"(100::nat) \<le> 100" by auto
next
show"(100::nat) < 200" by auto
qed
qed
qed
definition nousrid::UsrId where "nousrid\<equiv>Abs_UsrId 100"
definition valid_usrid::"UsrId\<Rightarrow>bool" where
"valid_usrid uid\<equiv>(uid\<noteq>nousrid)"
lemma USRIDLLR1:"uid\<noteq>nousrid\<Longrightarrow>valid_usrid uid"
proof -
assume "uid\<noteq>nousrid"
from this show "valid_usrid uid" by(auto simp:valid_usrid_def)
qed
lemma USRIDLLR2:"uid=nousrid\<Longrightarrow>\<not>valid_usrid uid"
proof
assume 0:"uid = nousrid"
assume 1:"valid_usrid uid"
from 1 have 2:"uid\<noteq>nousrid" by(auto simp:valid_usrid_def)
from 0 2 show False by auto
qed
typedef InfoId = "{x. x \<ge> (200::nat) \<and> x < 300}"
proof
show "(200::nat) \<in> {x. 200 \<le> x \<and> x < 300}"
proof
show"(200::nat) \<le> 200 \<and> 200 < (300::nat)"
proof
show"(200::nat) \<le> 200" by auto
next
show"(200::nat) < 300" by auto
qed
qed
qed
definition noinfoid::InfoId where "noinfoid\<equiv>Abs_InfoId 200"
definition valid_infoid::"InfoId\<Rightarrow>bool" where
"valid_infoid iid\<equiv>(iid\<noteq>noinfoid)"
lemma INFOIDLLR1:"iid\<noteq>noinfoid\<Longrightarrow>valid_infoid iid"
proof -
assume "iid\<noteq>noinfoid"
from this show "valid_infoid iid" by(auto simp:valid_infoid_def)
qed
lemma INFOIDLLR2:"iid=noinfoid\<Longrightarrow>\<not>valid_infoid iid"
proof
assume 0:"iid = noinfoid"
assume 1:"valid_infoid iid"
from 1 have 2:"iid\<noteq>noinfoid" by(auto simp:valid_infoid_def)
from 0 2 show False by auto
qed
interpretation SysId_ResrcId : SysId noresrcid valid_resrcid
proof
fix x
assume "x\<noteq>noresrcid"
from this show "valid_resrcid x" by(auto simp:RESRCIDLLR1)
next
fix x
assume "x=noresrcid"
from this show "\<not>valid_resrcid x" by(auto simp:RESRCIDLLR2)
qed
interpretation SysId_UsrId : SysId nousrid valid_usrid
proof
fix x
assume "x\<noteq>nousrid"
from this show "valid_usrid x" by(auto simp:USRIDLLR1)
next
fix x
assume "x = nousrid"
from this show " \<not>valid_usrid x" by(auto simp:USRIDLLR2)
qed
interpretation SysId_InfoId : SysId noinfoid valid_infoid
proof
fix x
assume "x\<noteq>noinfoid"
from this show "valid_infoid x" by(auto simp:INFOIDLLR1)
next
fix x
assume "x = noinfoid"
from this show "\<not>valid_infoid x" by(auto simp:INFOIDLLR2)
qed
end