_posts/2019-08-22-hadoop-community-meetup-beijing-aug.html (275 lines of code) (raw):
---
layout: post
status: PUBLISHED
published: true
title: Hadoop Community Meetup @ Beijing, Aug 2019
id: 5b18f0f0-6985-41b9-8357-cff113cb763d
date: '2019-08-22 09:50:18 -0400'
categories: hadoop
tags:
- meetup
- hadoop
permalink: hadoop/entry/hadoop-community-meetup-beijing-aug
---
<p><html></p>
<p><head><br />
<meta http-equiv=Content-Type content="text/html; charset=utf-8"><br />
<meta name=Generator content="Microsoft Word 15 (filtered)"></p>
<style>
<!--<br />
/* Font Definitions */<br />
@font-face<br />
{font-family:"Cambria Math";<br />
panose-1:2 4 5 3 5 4 6 3 2 4;}<br />
@font-face<br />
{font-family:Calibri;<br />
panose-1:2 15 5 2 2 2 4 3 2 4;}<br />
@font-face<br />
{font-family:"Calibri Light";<br />
panose-1:2 15 3 2 2 2 4 3 2 4;}<br />
@font-face<br />
{font-family:"DengXian Light";<br />
panose-1:2 1 6 0 3 1 1 1 1 1;}<br />
@font-face<br />
{font-family:Georgia;<br />
panose-1:2 4 5 2 5 4 5 2 3 3;}<br />
@font-face<br />
{font-family:"Noto Sans Symbols";<br />
panose-1:2 11 6 4 2 2 2 2 2 4;}<br />
@font-face<br />
{font-family:-webkit-standard;<br />
panose-1:2 11 6 4 2 2 2 2 2 4;}<br />
@font-face<br />
{font-family:"\@DengXian Light";}<br />
/* Style Definitions */<br />
p.MsoNormal, li.MsoNormal, div.MsoNormal<br />
{margin:0in;<br />
margin-bottom:.0001pt;<br />
font-size:12.0pt;<br />
font-family:"Calibri",sans-serif;}<br />
center {<br />
text-align: center;<br />
border: 3px solid blue;<br />
}<br />
h1<br />
{mso-style-link:"Heading 1 Char";<br />
margin-top:12.0pt;<br />
margin-right:0in;<br />
margin-bottom:0in;<br />
margin-left:0in;<br />
margin-bottom:.0001pt;<br />
page-break-after:avoid;<br />
font-size:16.0pt;<br />
font-family:"Calibri Light",sans-serif;<br />
color:#2F5496;<br />
font-weight:normal;}<br />
h2<br />
{mso-style-link:"Heading 2 Char";<br />
margin-top:2.0pt;<br />
margin-right:0in;<br />
margin-bottom:0in;<br />
margin-left:0in;<br />
margin-bottom:.0001pt;<br />
page-break-after:avoid;<br />
font-size:13.0pt;<br />
font-family:"Calibri Light",sans-serif;<br />
color:#2F5496;<br />
font-weight:normal;}<br />
h3<br />
{margin-top:14.0pt;<br />
margin-right:0in;<br />
margin-bottom:4.0pt;<br />
margin-left:0in;<br />
page-break-after:avoid;<br />
font-size:14.0pt;<br />
font-family:"Calibri",sans-serif;}<br />
h4<br />
{margin-top:12.0pt;<br />
margin-right:0in;<br />
margin-bottom:2.0pt;<br />
margin-left:0in;<br />
page-break-after:avoid;<br />
font-size:12.0pt;<br />
font-family:"Calibri",sans-serif;}<br />
h5<br />
{margin-top:11.0pt;<br />
margin-right:0in;<br />
margin-bottom:2.0pt;<br />
margin-left:0in;<br />
page-break-after:avoid;<br />
font-size:11.0pt;<br />
font-family:"Calibri",sans-serif;}<br />
h6<br />
{margin-top:10.0pt;<br />
margin-right:0in;<br />
margin-bottom:2.0pt;<br />
margin-left:0in;<br />
page-break-after:avoid;<br />
font-size:10.0pt;<br />
font-family:"Calibri",sans-serif;}<br />
p.MsoTitle, li.MsoTitle, div.MsoTitle<br />
{mso-style-link:"Title Char";<br />
margin:0in;<br />
margin-bottom:.0001pt;<br />
font-size:28.0pt;<br />
font-family:"Calibri Light",sans-serif;<br />
letter-spacing:-.5pt;}<br />
p.MsoTitleCxSpFirst, li.MsoTitleCxSpFirst, div.MsoTitleCxSpFirst<br />
{mso-style-link:"Title Char";<br />
margin:0in;<br />
margin-bottom:.0001pt;<br />
font-size:28.0pt;<br />
font-family:"Calibri Light",sans-serif;<br />
letter-spacing:-.5pt;}<br />
p.MsoTitleCxSpMiddle, li.MsoTitleCxSpMiddle, div.MsoTitleCxSpMiddle<br />
{mso-style-link:"Title Char";<br />
margin:0in;<br />
margin-bottom:.0001pt;<br />
font-size:28.0pt;<br />
font-family:"Calibri Light",sans-serif;<br />
letter-spacing:-.5pt;}<br />
p.MsoTitleCxSpLast, li.MsoTitleCxSpLast, div.MsoTitleCxSpLast<br />
{mso-style-link:"Title Char";<br />
margin:0in;<br />
margin-bottom:.0001pt;<br />
font-size:28.0pt;<br />
font-family:"Calibri Light",sans-serif;<br />
letter-spacing:-.5pt;}<br />
p.MsoSubtitle, li.MsoSubtitle, div.MsoSubtitle<br />
{margin-top:.25in;<br />
margin-right:0in;<br />
margin-bottom:4.0pt;<br />
margin-left:0in;<br />
page-break-after:avoid;<br />
font-size:24.0pt;<br />
font-family:"Georgia",serif;<br />
color:#666666;<br />
font-style:italic;}<br />
p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph<br />
{margin-top:0in;<br />
margin-right:0in;<br />
margin-bottom:0in;<br />
margin-left:.5in;<br />
margin-bottom:.0001pt;<br />
font-size:12.0pt;<br />
font-family:"Calibri",sans-serif;}<br />
p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst<br />
{margin-top:0in;<br />
margin-right:0in;<br />
margin-bottom:0in;<br />
margin-left:.5in;<br />
margin-bottom:.0001pt;<br />
font-size:12.0pt;<br />
font-family:"Calibri",sans-serif;}<br />
p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle<br />
{margin-top:0in;<br />
margin-right:0in;<br />
margin-bottom:0in;<br />
margin-left:.5in;<br />
margin-bottom:.0001pt;<br />
font-size:12.0pt;<br />
font-family:"Calibri",sans-serif;}<br />
p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast<br />
{margin-top:0in;<br />
margin-right:0in;<br />
margin-bottom:0in;<br />
margin-left:.5in;<br />
margin-bottom:.0001pt;<br />
font-size:12.0pt;<br />
font-family:"Calibri",sans-serif;}<br />
span.TitleChar<br />
{mso-style-name:"Title Char";<br />
mso-style-link:Title;<br />
font-family:"Calibri Light",sans-serif;<br />
letter-spacing:-.5pt;}<br />
span.Heading1Char<br />
{mso-style-name:"Heading 1 Char";<br />
mso-style-link:"Heading 1";<br />
font-family:"Calibri Light",sans-serif;<br />
color:#2F5496;}<br />
span.Heading2Char<br />
{mso-style-name:"Heading 2 Char";<br />
mso-style-link:"Heading 2";<br />
font-family:"Calibri Light",sans-serif;<br />
color:#2F5496;}<br />
.MsoChpDefault<br />
{font-family:"Calibri",sans-serif;}<br />
@page WordSection1<br />
{size:8.5in 11.0in;<br />
margin:1.0in 1.0in 1.0in 1.0in;}<br />
div.WordSection1<br />
{page:WordSection1;}<br />
/* List Definitions */<br />
ol<br />
{margin-bottom:0in;}<br />
ul<br />
{margin-bottom:0in;}<br />
--><br />
</style>
<p></head></p>
<p><body lang=EN-US></p>
<div class=WordSection1>
<p class=MsoTitle align=center style='text-align:center'>Hadoop Community<br />
Meetup @ Beijing</p>
<h4>
<p>Author: Junping Du (Tencent) & Wangda Tan (Cloudera)</p>
</h4>
<p><a href="https://blogs.apache.org/hadoop/mediaresource/fdaef52f-146c-46c3-b780-b501a7302d94"><img src="https://blogs.apache.org/hadoop/mediaresource/fdaef52f-146c-46c3-b780-b501a7302d94" alt="Picture01.jpg"></img></a></p>
<p><a href="https://blogs.apache.org/hadoop/mediaresource/581538b6-3a43-49c0-b092-eaede2739c03"><img src="https://blogs.apache.org/hadoop/mediaresource/581538b6-3a43-49c0-b092-eaede2739c03" alt="Picture02.jpg"></img></a></p>
<h1>Overview</h1>
<p class=MsoNormal>On Aug 11<sup>th</sup> 2019, Hadoop developers/users<br />
gathered together at Tencent’s Sigma Center office in Beijing to share their<br />
latest works, with 12 presentations by engineers from Tencent, Cloudera,<br />
Alibaba, Didi, Xiaomi, Meituan, ByteDance (Parent company of TikTok, Toutiao,<br />
etc.), JD.com, Huawei. This is also first Hadoop community meetup hosted by<br />
Apache Hadoop PMC members. </p>
<h2>Attendees</h2>
<p class=MsoNormal>We received tremendous numbers of participations to the<br />
meetup. There’re 200 spots available for registration to attend this meetup<br />
in-person, and spots got fully booked in <b>10 mins</b>. We got <b>150+</b><br />
attendees in-person, and <b>3000+</b> attendees participated online live<br />
sessions. </p>
<p class=MsoNormal>We have participants from dozens of different companies and<br />
universities in person, many of them are flying from Shanghai, Hangzhou,<br />
Shenzhen and even San Francisco Bay Area! </p>
<h1>Sessions</h1>
<h2>1. Hadoop Community Update And Roadmaps</h2>
<p class=MsoNormal>Junping Du @ Tencent and Wangda Tan @ Cloudera talked about<br />
Hadoop community updates and roadmaps.</p>
<p><a href="https://blogs.apache.org/hadoop/mediaresource/f7f923fb-95a2-4da9-ab67-0647152a1532"><img src="https://blogs.apache.org/hadoop/mediaresource/f7f923fb-95a2-4da9-ab67-0647152a1532" alt="Picture03.jpg"></img></a></p>
<p class=MsoNormal align=center style='text-align:center'><span<br />
style='font-family:-webkit-standard;color:black'>Junping Du @ Tencent</span></p>
<p class=MsoNormal><span style='font-family:-webkit-standard;color:black'> </span></p>
<p><a href="https://blogs.apache.org/hadoop/mediaresource/46a5a5e5-285b-487e-b7d1-4dbc8f055d7c"><img src="https://blogs.apache.org/hadoop/mediaresource/46a5a5e5-285b-487e-b7d1-4dbc8f055d7c" alt="Picture04.jpg"></img></a></p>
<p class=MsoNormal align=center style='text-align:center'><span<br />
style='font-family:"Times New Roman",serif'>Wangda Tan @ Cloudera</span></p>
<p class=MsoNormal>Junping introduced recent trends in the storage field, such<br />
as better scalability and moving to cloud. He talked about features like RBF<br />
(Router Based Federation), improvements of NameNode scalability, Improvements<br />
of cloud connectors and Ozone. </p>
<p class=MsoNormal>Wangda talked about recent trends in the compute field, such<br />
as better scalability, moving to clkoud-native environment, containerization<br />
works and support of Machine-Learning use cases. He talked about global<br />
scheduling framework for better scheduling throughput and placement quality.<br />
Recent containerization works in YARN such as runc, interactive docker shell.<br />
And YARN-on-cloud initiatives from community such as autoscaling, graceful<br />
decommissions, etc. Wangda also talked about Submarine and its release plans. </p>
<p class=MsoNormal>At last, Wangda looked back at releases in 2018/2019, and<br />
shared tentative release plan of Hadoop in 2019. Such as 3.1.3, 3.2.1 and<br />
what’s new coming to 3.3.0. </p>
<h2>2. Ozone: Hadoop native object store </h2>
<p class=MsoNormal>Sammi (Yi) Chen @ Tencent talked about native object store<br />
project from Hadoop community. </p>
<p><a href="https://blogs.apache.org/hadoop/mediaresource/7b5c8dc2-d493-4883-ac0a-b2330e3a4314"><img src="https://blogs.apache.org/hadoop/mediaresource/7b5c8dc2-d493-4883-ac0a-b2330e3a4314" alt="Picture05.jpg"></img></a></p>
<p class=MsoNormal>Ozone is a strong-consistent distributed object store<br />
service. Like HDFS, Ozone has same level of reliability, consistency and<br />
usability. It supports S3 interface, so it is not only useful to on-prem<br />
big-data workload. It is also a good option to move big data to cloud. </p>
<p class=MsoNormal>Sammi talked about architecture of Ozone, and what’s new in<br />
Ozone 0.5 release. </p>
<h2>3. YARN 3.x in Alibaba </h2>
<p class=MsoNormal>Tao Yang from Alibaba talked about Hadoop use cases in<br />
Alibaba. He also talked about how new features in YARN 3.x being used to solve<br />
use cases. Tao talked about features like preemption, scheduling, resource<br />
over-commitment, scheduling diagnostic, mixed deployment of online/offline<br />
workload. Tao also talked about how new features in YARN help to better run<br />
Apache Flink on YARN. </p>
<p><a href="https://blogs.apache.org/hadoop/mediaresource/c4b7a61e-4b32-40cd-b4a0-4e7b3a6693b6"><img src="https://blogs.apache.org/hadoop/mediaresource/c4b7a61e-4b32-40cd-b4a0-4e7b3a6693b6" alt="Picture06.jpg"></img></a></p>
<p class=MsoNormal>Tao talked about many interesting features such as<br />
MultiNodeLookupPolicy, which can help schedule jobs on a pluggable node sorter.</p>
<h2>4. HDFS Best Practices learned from Didi’s production environment. </h2>
<p class=MsoNormal>Hui Fei from Didi talked about HDFS best practices learned<br />
from Didi’s large scale (hundreds of PBs) production environment.</p>
<p class=MsoNormal>Hui first talked about storage use cases and scale in Didi’s<br />
environment. Then Hui talked about functionalities and improvements Didi’s<br />
Hadoop team built on top of Hadoop HDFS 2.7.2 such as: Security, NameNode<br />
Federation, Balancer, etc.</p>
<p><a href="https://blogs.apache.org/hadoop/mediaresource/57b9a051-9e6b-4616-b1ca-dcdab17cd42f"><img src="https://blogs.apache.org/hadoop/mediaresource/57b9a051-9e6b-4616-b1ca-dcdab17cd42f" alt="Picture07.jpg"></img></a></p>
<p class=MsoNormal>Hui also talked about the status of upgrading production<br />
cluster based on Hadoop 2.7.2 to Hadoop 3.2.0. The primary driver of upgrade is<br />
to save storage spaces. Didi wants to use features like Erasure Coding in<br />
Hadoop 3.x. </p>
<p class=MsoNormal>Didi has upgraded a test cluster (100+ nodes) from 2.7.2 to<br />
3.2.0, has a backup cluster with 2k+ nodes run Hadoop 3.1.1 and will rolling<br />
upgrade it to 3.2.0. There’s a primary cluster with 10K+ nodes (with 5<br />
namespaces), will start to upgrade to 3.2.0 starting Oct</p>
<h2>5. Submarine: A one-stop, cross-platform machine learning platform</h2>
<p class=MsoNormal>Xun Liu @ NetEase and Zhankun Tang @ Cloudera talked about<br />
background, existing status and future of Submarine project.</p>
<p><a href="https://blogs.apache.org/hadoop/mediaresource/06051afb-2491-45d3-bade-4c3a8fdbcc4e"><img src="https://blogs.apache.org/hadoop/mediaresource/06051afb-2491-45d3-bade-4c3a8fdbcc4e" alt="Picture08.jpg"></img></a></p>
<p class=MsoNormal align=center style='text-align:center'><span<br />
style='font-family:-webkit-standard;color:black'>Zhankun Tang @ Cloudera</span></p>
<p class=MsoNormal align=center style='text-align:center'><span<br />
style='font-family:"Times New Roman",serif'> </span></p>
<p><a href="https://blogs.apache.org/hadoop/mediaresource/a0087efe-b086-4b75-bb36-03518dcaeb3d"><img src="https://blogs.apache.org/hadoop/mediaresource/a0087efe-b086-4b75-bb36-03518dcaeb3d" alt="Picture09.jpg"></img></a></p>
<p class=MsoNormal align=center style='text-align:center'><span<br />
style='font-family:"Times New Roman",serif'>Xun Liu @ Netease</span></p>
<p class=MsoNormal>Machine learning includes many components like<br />
data-preprocessing, feature extraction, model training/serving/management,<br />
distributed workload management. Submarine project started by Hadoop community<br />
is targeted to achieve these goals by focusing on Notebook experiences. With<br />
Submarine, data scientists or machine learning engineer don’t need to<br />
understand lower-level platform such as YARN, K8s, Docker container. </p>
<p class=MsoNormal>Zhankun showed a new feature called mini-submarine which<br />
allows developers try Submarine locally without installing a YARN cluster. </p>
<p class=MsoNormal>Xun did demos for:</p>
<p class=MsoNormal style='margin-left:.5in;text-indent:-.25in;border:none'><span<br />
style='font-family:"Noto Sans Symbols"'>●<span style='font:7.0pt "Times New Roman"'> <br />
</span></span><span style='color:black'>Integration of Submarine + Zeppelin<br />
notebook. </span></p>
<p class=MsoNormal style='margin-left:.5in;text-indent:-.25in;border:none'><span<br />
style='font-family:"Noto Sans Symbols"'>●<span style='font:7.0pt "Times New Roman"'> <br />
</span></span><span style='color:black'>New Submarine web UI to allow data </span>scientists<span<br />
style='color:black'> to run jobs and manage models, etc. in the unified user<br />
experiences. </span></p>
<p class=MsoNormal>Xun also talked about companies which are reported using<br />
Submarine in production. Such as NetEase, Linkedin, Dahua, Ke.com, JD.com. </p>
<h2>6. Hadoop Improvements in Xiaomi</h2>
<p class=MsoNormal>Chen Zhang and Kang Zhou from Xiaomi talked about how Hadoop<br />
is being used in Xiaomi. They talked about improvements of HDFS’s performance<br />
and scalability; Problems/Solutions when trying to platformize YARN. </p>
<p class=MsoNormal>For HDFS side, Chen talked about their improvements of HDFS<br />
federation, such as lower the business impact when upgrading single NameNode to<br />
federated NameNode. They have also improved NameNode Performance, which now<br />
allows supporting 600 millions of objects (files + blocks) in a single<br />
NameNode.</p>
<p><a href="https://blogs.apache.org/hadoop/mediaresource/8e597b99-fb73-4e6a-9f1d-4211e1e58794"><img src="https://blogs.apache.org/hadoop/mediaresource/8e597b99-fb73-4e6a-9f1d-4211e1e58794" alt="Picture10.jpg"></img></a></p>
<p class=MsoNormal>In YARN, Kang talked about usability improvements in YARN.<br />
Such as RMStateStore/History Server, etc. Also, he talked about multi-cluster<br />
management tools such as a unified client/RM-UI for multiple clusters. Kang<br />
also talked about improvements they have done for scheduling optimization like<br />
cache Resource Usage, improvements of utilization and preemption, etc. </p>
<h2>7. Key Customizations of YARN @ ByteDance </h2>
<p class=MsoNormal>Yakun Li from ByteDance talked customizations of their YARN<br />
cluster to handle extra large scale, multi-clusters environment, Including:<br />
utilization improvements, stabilization, optimizations for<br />
streaming/model-training environment, and multi datacenter issues, etc. </p>
<p><a href="https://blogs.apache.org/hadoop/mediaresource/f217e756-cb1c-4e0c-955b-434e0b4d5dae"><img src="https://blogs.apache.org/hadoop/mediaresource/f217e756-cb1c-4e0c-955b-434e0b4d5dae" alt="Picture11.jpg"></img></a> </p>
<p class=MsoNormal>For scheduling, Yakun also talked about how they implement<br />
Gang Scheduling in YARN, which do scheduling for application instead of node.<br />
And it can achieve low-latency, hard/soft constraints. He also talked about<br />
implementation of multi-thread version FairScheduler which can push number of<br />
container allocation per second up to 3k. </p>
<p class=MsoNormal>In mixed-workloads (Batch, Streaming, ML) deployment part,<br />
Yakun talked about they have adopted Docker on YARN support to isolate<br />
dependencies. Support CPUSET/NUMA, temporarily skip nodes which have too high<br />
physical utilizations, etc. All these efforts can help mixed workload runs well<br />
in same cluster.</p>
<h2>8. YuniKorn: A New Unified Scheduler for Both YARN and K8s </h2>
<p class=MsoNormal>Weiwei Yang and Wangda Tan from Cloudera talked about their<br />
works about a new scheduler named YuniKorn (<a<br />
href="https://github.com/cloudera/yunikorn-core"><span style='color:#1155CC'>https://github.com/cloudera/yunikorn-core</span></a>)<br />
and how it can benefit both YARN and K8s community. </p>
<p><a href="https://blogs.apache.org/hadoop/mediaresource/22b6c49d-62eb-4361-88fc-383f4c0dd430"><img src="https://blogs.apache.org/hadoop/mediaresource/22b6c49d-62eb-4361-88fc-383f4c0dd430" alt="Picture12.jpg"></img></a> </p>
<p class=MsoNormal align=center style='text-align:center'><span<br />
style='font-family:"Times New Roman",serif'>Weiwei Yang (Right) and Wangda Tan<br />
(Left) from Cloudera</span></p>
<p class=MsoNormal>Scheduler of a container orchestration system, such as YARN<br />
and Kubernetes, is a critical component that users rely on to plan resources<br />
and manage applications. They have different characters to support different<br />
workloads.</p>
<p class=MsoNormal>YARN schedulers are optimized for high-throughput,<br />
multi-tenant batch workloads. It can scale up to 50k nodes per cluster, and<br />
schedule 20k containers per second; On the other side, Kubernetes schedulers<br />
are optimized for long-running services, but many features like hierarchical<br />
queues, fairness resource sharing, and preemption etc, are either missing or<br />
not mature enough at this point of time.</p>
<p class=MsoNormal>However, underneath they are responsible for one same job:<br />
the decision maker for resource allocations. They mentioned the need to run<br />
services on YARN as well as run jobs on Kubernetes. This motivates them to<br />
create a universal scheduler which can work for both YARN and Kubernetes and<br />
configured in the same way.</p>
<p class=MsoNormal>In this talk, Weiwei and Wangda talked about their efforts<br />
of design and implement the universal scheduler. They have integrated it with<br />
to Kubernetes already and YARN integration is working-in-progress. This<br />
scheduler brings long-wanted features such as hierarchical queues, fairness<br />
between users/jobs/queues, preemption to Kubernetes; and it brings service<br />
scheduling enhancements to YARN. Most importantly, it provides the opportunity<br />
to let YARN and Kubernetes share the same user experience on scheduling big<br />
data workloads. And any improvements of this universal scheduler can benefit<br />
both Kubernetes and YARN community.</p>
<h2>9. HDFS cluster improvements and optimization practices in Meituan Dianping<br />
</h2>
<p class=MsoNormal>Xiaoqiao He from Meituan Dianping talked about Hadoop<br />
cluster scalabilities now. Their Hadoop cluster keep growing since 2015. By<br />
far, there’re more than 30k nodes in the Hadoop clusters. </p>
<p><a href="https://blogs.apache.org/hadoop/mediaresource/ef6801e9-77ae-4bd1-b32c-ee889a16a7ca"><img src="https://blogs.apache.org/hadoop/mediaresource/ef6801e9-77ae-4bd1-b32c-ee889a16a7ca" alt="Picture13.jpg"></img></a></p>
<p class=MsoNormal>He shared many details and practice about the infrastructure<br />
of physical deployments, especially on solution for cluster across multiple<br />
regions. In the last part, Xiaoqiao shows some practices for optimizing HDFS<br />
cluster, such as: improve the Namenode restart process and rebalance for<br />
Namenode workload, etc.</p>
<h2><a name="_heading=h.aldjt4xtlgc"></a>10. Evolution of YARN in JD.com</h2>
<p class=MsoNormal>Wanqiang Ji from JD.com talked about how YARN evolves to<br />
support JD.com’s business needs. </p>
<p><a href="https://blogs.apache.org/hadoop/mediaresource/5513cff6-0674-4215-8a2f-12ade3d9b04d"><img src="https://blogs.apache.org/hadoop/mediaresource/5513cff6-0674-4215-8a2f-12ade3d9b04d" alt="Picture14.jpg"></img></a></p>
<p class=MsoNormal>In the last 3 years, maximum number of nodes in a single<br />
YARN cluster scales from 3k, 5k, 10k to 16k. Internally there’re works to<br />
balance resources between YARN/K8s cluster. Also there are improvements of<br />
container eviction policies to make sure nodes won’t crash or restart when<br />
machine’s physical utilization grows above a certain level. </p>
<h2><a name="_heading=h.o4jjvh6qs4pp"></a>11. Lessons learned from large scale<br />
YARN cluster operation @ Tencent</h2>
<p class=MsoNormal>Jun Gong and Dongdong Chen from Tencent talked about their<br />
works to support large scale YARN cluster inside tencent. </p>
<p><a href="https://blogs.apache.org/hadoop/mediaresource/32c57607-a28c-41de-96a5-f0371a5a6748"><img src="https://blogs.apache.org/hadoop/mediaresource/32c57607-a28c-41de-96a5-f0371a5a6748" alt="Picture15.jpg"></img></a></p>
<p class=MsoNormal align=center style='text-align:center'>Gong Jun @ Tencent</p>
<p><a href="https://blogs.apache.org/hadoop/mediaresource/d65796d7-4740-41c5-9e36-ade2a9d5573b"><img src="https://blogs.apache.org/hadoop/mediaresource/d65796d7-4740-41c5-9e36-ade2a9d5573b" alt="Picture16.jpg"></img></a></p>
<p class=MsoNormal align=center style='text-align:center'>Dongdong Chen @<br />
Tencent</p>
<p class=MsoNormal>Jun and Dongdong shared inside Tencent, they widely used SLS<br />
to figure out bottleneck of scheduler, many of the scheduler improvements have<br />
contributed back to the community. After optimization, in their production<br />
cluster, they have 2k+ queues, 8K+ nodes, 5k+ concurrent jobs. And they can<br />
achieve 3k+ container allocations per second, and more than 100 millions<br />
container allocations per day.</p>
<p class=MsoNormal>Also, Jun and Dongdong shared how they uses YARN CGroups<br />
parameters to fine-tune CPU/Memory/Network shares for launched YARN containers<br />
in a multi-tenant cluster.</p>
<h2><a name="_heading=h.sxlj482o0isz"></a>12. Run Spark and Hadoop on ARM</h2>
<p class=MsoNormal>Rui Chen and Sheng Liu from Huawei shared their works to run<br />
Spark and Hadoop on ARM.</p>
<p><a href="https://blogs.apache.org/hadoop/mediaresource/b6a72eef-5158-4abd-bb83-33eb867f33f3"><img src="https://blogs.apache.org/hadoop/mediaresource/b6a72eef-5158-4abd-bb83-33eb867f33f3" alt="Picture17.jpg"></img></a></p>
<p class=MsoNormal align=center style='text-align:center'>Rui Chen</p>
<p class=MsoNormal align=center style='text-align:center'> </p>
<p><a href="https://blogs.apache.org/hadoop/mediaresource/88c34ec0-d4fd-47c8-8ed9-47724d6c715d"><img src="https://blogs.apache.org/hadoop/mediaresource/88c34ec0-d4fd-47c8-8ed9-47724d6c715d" alt="Picture18.jpg"></img></a></p>
<p class=MsoNormal align=center style='text-align:center'>Sheng Liu</p>
<p class=MsoNormal align=center style='text-align:center'> </p>
<p class=MsoNormal>Rui and Sheng shared the motivation of running hadoop and<br />
spark on ARM platform which is for high performance and power efficiency. After<br />
that, they went ahead to share status of ARM support for hadoop and spark and<br />
details of building release Tarball on ARM platform include parameters, and<br />
issues. In the last part, they introduced how hadoop/spark release work can<br />
make sure proper testing for arm platform and they were building a community<br />
called OpenLab to make sure the process more smoothly.</p>
<p class=MsoNormal align=center style='text-align:center'> </p>
<h1>Acknowledges</h1>
<p class=MsoNormal>Thanks everyone for contributing this successful event in<br />
one way or another, such as following speakers:</p>
<p class=MsoNormal>Sammi Chen, Jun Gong and Dongdong Chen from Tencent, </p>
<p class=MsoNormal>Weiwei Yang, Zhankun Tang from Cloudera, </p>
<p class=MsoNormal>Wanqiang Ji from Jingdong, </p>
<p class=MsoNormal>Tao Yang from Alibaba, </p>
<p class=MsoNormal>Chen Zhang and Kang Zhou from Xiaomi, </p>
<p class=MsoNormal> Hui Fei from Didi, </p>
<p class=MsoNormal>Rui Chen and Sheng Liu from Huawei, </p>
<p class=MsoNormal>Xiaoqiao He from Meituan Dianping ,</p>
<p class=MsoNormal>Yakun Li from ByteDance,</p>
<p class=MsoNormal>and Xun Liu from Netease.</p>
<p class=MsoNormal>And especially thanks Chunyu Wang, Summer Xia, Katty Ma for<br />
organizing the meetup!</p>
</div>
<p></body></p>
<p></html></p>