api/pages/issue/pony-timeseries.py (122 lines of code) (raw):
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
########################################################################
# OPENAPI-URI: /api/issue/pony-timeseries
########################################################################
# get:
# responses:
# '200':
# content:
# application/json:
# schema:
# $ref: '#/components/schemas/Timeseries'
# description: 200 Response
# default:
# content:
# application/json:
# schema:
# $ref: '#/components/schemas/Error'
# description: unexpected error
# security:
# - cookieAuth: []
# summary: Shows timeseries of Pony Factor over time
# post:
# requestBody:
# content:
# application/json:
# schema:
# $ref: '#/components/schemas/defaultWidgetArgs'
# responses:
# '200':
# content:
# application/json:
# schema:
# $ref: '#/components/schemas/Timeseries'
# description: 200 Response
# default:
# content:
# application/json:
# schema:
# $ref: '#/components/schemas/Error'
# description: unexpected error
# security:
# - cookieAuth: []
# summary: Shows timeseries of Pony Factor over time
#
########################################################################
"""
This is the pony factor renderer for Kibble
"""
import json
import time
import re
import datetime
import dateutil.relativedelta
def run(API, environ, indata, session):
# We need to be logged in for this!
if not session.user:
raise API.exception(403, "You must be logged in to use this API endpoint! %s")
now = time.time()
# First, fetch the view if we have such a thing enabled
viewList = []
if indata.get('view'):
viewList = session.getView(indata.get('view'))
if indata.get('subfilter'):
viewList = session.subFilter(indata.get('subfilter'), view = viewList)
hl = indata.get('span', 24)
tnow = datetime.date.today()
nm = tnow.month - (tnow.month % 3)
ny = tnow.year
ts = []
if nm < 1:
nm += 12
ny = ny - 1
while ny > 1970:
d = datetime.date(ny, nm, 1)
t = time.mktime(d.timetuple())
d = d - dateutil.relativedelta.relativedelta(months=hl)
tf = time.mktime(d.timetuple())
nm -= 3
if nm < 1:
nm += 12
ny = ny - 1
####################################################################
####################################################################
dOrg = session.user['defaultOrganisation'] or "apache"
query = {
'query': {
'bool': {
'must': [
{'range':
{
'created': {
'from': tf,
'to': t
}
}
},
{
'term': {
'organisation': dOrg
}
}
]
}
}
}
# Source-specific or view-specific??
if indata.get('source'):
query['query']['bool']['must'].append({'term': {'sourceID': indata.get('source')}})
elif viewList:
query['query']['bool']['must'].append({'terms': {'sourceID': viewList}})
# Get an initial count of commits
res = session.DB.ES.count(
index=session.DB.dbname,
doc_type="issue",
body = query
)
globcount = res['count']
if globcount == 0:
break
# Get top 25 committers this period
query['aggs'] = {
'by_creator': {
'terms': {
'field': 'issueCreator',
'size': 1000
}
},
'by_closer': {
'terms': {
'field': 'issueCloser',
'size': 1000
}
}
}
res = session.DB.ES.search(
index=session.DB.dbname,
doc_type="issue",
size = 0,
body = query
)
cpf = {}
# PF for openers
pf_opener = 0
pf_opener_count = 0
for bucket in res['aggregations']['by_creator']['buckets']:
count = bucket['doc_count']
pf_opener += 1
pf_opener_count += count
if '@' in bucket['key']:
mldom = bucket['key'].lower().split('@')[-1]
cpf[mldom] = True
if pf_opener_count > int(globcount/2):
break
# PF for closer
pf_closer = 0
pf_closer_count = 0
for bucket in res['aggregations']['by_closer']['buckets']:
count = bucket['doc_count']
pf_closer += 1
pf_closer_count += count
if '@' in bucket['key']:
mldom = bucket['key'].lower().split('@')[-1]
cpf[mldom] = True
if pf_closer_count > int(globcount/2):
break
ts.append({
'date': t,
'Pony Factor (openers)': pf_opener,
'Pony Factor (closers)': pf_closer,
'Meta-Pony Factor': len(cpf)
})
ts = sorted(ts, key = lambda x: x['date'])
JSON_OUT = {
'text': "This shows Pony Factors as calculated over a %u month timespan. Openers measures the people submitting the bulk of the issues, closers mesaures the people closing (resolving) the issues, and meta-pony is an estimation of how many organisations/companies are involved." % hl,
'timeseries': ts,
'okay': True,
'responseTime': time.time() - now,
}
yield json.dumps(JSON_OUT)