api/pages/mail/mood-timeseries.py (87 lines of code) (raw):
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
########################################################################
# OPENAPI-URI: /api/mail/mood-timeseries
########################################################################
# get:
# responses:
# '200':
# content:
# application/json:
# schema:
# $ref: '#/components/schemas/Timeseries'
# description: 200 Response
# default:
# content:
# application/json:
# schema:
# $ref: '#/components/schemas/Error'
# description: unexpected error
# security:
# - cookieAuth: []
# summary: Shows a breakdown of the (analyzed) mood in emails as a timeseries
# post:
# requestBody:
# content:
# application/json:
# schema:
# $ref: '#/components/schemas/defaultWidgetArgs'
# responses:
# '200':
# content:
# application/json:
# schema:
# $ref: '#/components/schemas/Timeseries'
# description: 200 Response
# default:
# content:
# application/json:
# schema:
# $ref: '#/components/schemas/Error'
# description: unexpected error
# security:
# - cookieAuth: []
# summary: Shows a breakdown of the (analyzed) mood in emails as a timeseries
#
########################################################################
"""
This is the email mood timeseries renderer for Kibble
"""
import json
import time
def run(API, environ, indata, session):
# We need to be logged in for this!
if not session.user:
raise API.exception(403, "You must be logged in to use this API endpoint! %s")
# First, fetch the view if we have such a thing enabled
viewList = []
if indata.get('view'):
viewList = session.getView(indata.get('view'))
if indata.get('subfilter'):
viewList = session.subFilter(indata.get('subfilter'), view = viewList)
dateTo = indata.get('to', int(time.time()))
dateFrom = indata.get('from', dateTo - (86400*30*6)) # Default to a 6 month span
interval = indata.get('interval', 'week')
# Define moods we know of
moods_good = set(['trust', 'joy', 'confident', 'positive'])
moods_bad = set(['sadness', 'anger', 'disgust', 'fear', 'negative'])
moods_neutral = set(['anticipation', 'surprise', 'tentative', 'analytical', 'neutral'])
all_moods = set(moods_good | moods_bad | moods_neutral)
# Fetch all sources for default org
dOrg = session.user['defaultOrganisation'] or "apache"
query = {
'query': {
'bool': {
'must': [
{'range':
{
'ts': {
'from': dateFrom,
'to': dateTo
}
}
},
{
'term': {
'organisation': dOrg
}
},
{ 'exists': {
'field': 'mood'
}
}
]
}
}
}
# Source-specific or view-specific??
if indata.get('source'):
query['query']['bool']['must'].append({'term': {'sourceID': indata.get('source')}})
elif viewList:
query['query']['bool']['must'].append({'terms': {'sourceID': viewList}})
emls = session.DB.ES.count(
index=session.DB.dbname,
doc_type="email",
body = query
)['count']
query['aggs'] = {
'history': {
'date_histogram': {
'field': 'date',
'interval': interval
},
'aggs': {
}
}
}
# Add aggregations for moods
for mood in all_moods:
query['aggs']['history']['aggs'][mood] = {
'sum': {
'field': "mood.%s" % mood
}
}
res = session.DB.ES.search(
index=session.DB.dbname,
doc_type="email",
size = 0,
body = query
)
timeseries = []
for tz in res['aggregations']['history']['buckets']:
moods = {}
emls = tz['doc_count']
for mood in all_moods:
moods[mood] = int (100 * tz.get(mood, {'value':0})['value'] / max(1, emls))
moods['date'] = int(tz['key']/1000)
timeseries.append(moods)
JSON_OUT = {
'timeseries': timeseries,
'okay': True
}
yield json.dumps(JSON_OUT)