api/pages/mail/mood-timeseries.py (87 lines of code) (raw):

#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ######################################################################## # OPENAPI-URI: /api/mail/mood-timeseries ######################################################################## # get: # responses: # '200': # content: # application/json: # schema: # $ref: '#/components/schemas/Timeseries' # description: 200 Response # default: # content: # application/json: # schema: # $ref: '#/components/schemas/Error' # description: unexpected error # security: # - cookieAuth: [] # summary: Shows a breakdown of the (analyzed) mood in emails as a timeseries # post: # requestBody: # content: # application/json: # schema: # $ref: '#/components/schemas/defaultWidgetArgs' # responses: # '200': # content: # application/json: # schema: # $ref: '#/components/schemas/Timeseries' # description: 200 Response # default: # content: # application/json: # schema: # $ref: '#/components/schemas/Error' # description: unexpected error # security: # - cookieAuth: [] # summary: Shows a breakdown of the (analyzed) mood in emails as a timeseries # ######################################################################## """ This is the email mood timeseries renderer for Kibble """ import json import time def run(API, environ, indata, session): # We need to be logged in for this! if not session.user: raise API.exception(403, "You must be logged in to use this API endpoint! %s") # First, fetch the view if we have such a thing enabled viewList = [] if indata.get('view'): viewList = session.getView(indata.get('view')) if indata.get('subfilter'): viewList = session.subFilter(indata.get('subfilter'), view = viewList) dateTo = indata.get('to', int(time.time())) dateFrom = indata.get('from', dateTo - (86400*30*6)) # Default to a 6 month span interval = indata.get('interval', 'week') # Define moods we know of moods_good = set(['trust', 'joy', 'confident', 'positive']) moods_bad = set(['sadness', 'anger', 'disgust', 'fear', 'negative']) moods_neutral = set(['anticipation', 'surprise', 'tentative', 'analytical', 'neutral']) all_moods = set(moods_good | moods_bad | moods_neutral) # Fetch all sources for default org dOrg = session.user['defaultOrganisation'] or "apache" query = { 'query': { 'bool': { 'must': [ {'range': { 'ts': { 'from': dateFrom, 'to': dateTo } } }, { 'term': { 'organisation': dOrg } }, { 'exists': { 'field': 'mood' } } ] } } } # Source-specific or view-specific?? if indata.get('source'): query['query']['bool']['must'].append({'term': {'sourceID': indata.get('source')}}) elif viewList: query['query']['bool']['must'].append({'terms': {'sourceID': viewList}}) emls = session.DB.ES.count( index=session.DB.dbname, doc_type="email", body = query )['count'] query['aggs'] = { 'history': { 'date_histogram': { 'field': 'date', 'interval': interval }, 'aggs': { } } } # Add aggregations for moods for mood in all_moods: query['aggs']['history']['aggs'][mood] = { 'sum': { 'field': "mood.%s" % mood } } res = session.DB.ES.search( index=session.DB.dbname, doc_type="email", size = 0, body = query ) timeseries = [] for tz in res['aggregations']['history']['buckets']: moods = {} emls = tz['doc_count'] for mood in all_moods: moods[mood] = int (100 * tz.get(mood, {'value':0})['value'] / max(1, emls)) moods['date'] = int(tz['key']/1000) timeseries.append(moods) JSON_OUT = { 'timeseries': timeseries, 'okay': True } yield json.dumps(JSON_OUT)