api/pages/mail/mood.py (140 lines of code) (raw):

#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ######################################################################## # OPENAPI-URI: /api/mail/mood ######################################################################## # get: # responses: # '200': # content: # application/json: # schema: # $ref: '#/components/schemas/Sloc' # description: 200 Response # default: # content: # application/json: # schema: # $ref: '#/components/schemas/Error' # description: unexpected error # security: # - cookieAuth: [] # summary: Shows a breakdown of the (analyzed) mood in emails # post: # requestBody: # content: # application/json: # schema: # $ref: '#/components/schemas/defaultWidgetArgs' # responses: # '200': # content: # application/json: # schema: # $ref: '#/components/schemas/Sloc' # description: 200 Response # default: # content: # application/json: # schema: # $ref: '#/components/schemas/Error' # description: unexpected error # security: # - cookieAuth: [] # summary: Shows a breakdown of the (analyzed) mood in emails # ######################################################################## """ This is the email mood renderer for Kibble """ import json import time def run(API, environ, indata, session): # We need to be logged in for this! if not session.user: raise API.exception(403, "You must be logged in to use this API endpoint! %s") # First, fetch the view if we have such a thing enabled viewList = [] if indata.get('view'): viewList = session.getView(indata.get('view')) if indata.get('subfilter'): viewList = session.subFilter(indata.get('subfilter'), view = viewList) dateTo = indata.get('to', int(time.time())) dateFrom = indata.get('from', dateTo - (86400*30*6)) # Default to a 6 month span # Define moods we know of moods_good = set(['trust', 'joy', 'confident', 'positive']) moods_bad = set(['sadness', 'anger', 'disgust', 'fear', 'negative']) moods_neutral = set(['anticipation', 'surprise', 'tentative', 'analytical', 'neutral']) all_moods = set(moods_good | moods_bad | moods_neutral) # Start off with a query for the entire org (we want to compare) dOrg = session.user['defaultOrganisation'] or "apache" query = { 'query': { 'bool': { 'must': [ {'range': { 'ts': { 'from': dateFrom, 'to': dateTo } } }, { 'term': { 'organisation': dOrg } }, { 'exists': { 'field': 'mood' } } ] } } } # Count all emails, for averaging scores gemls = session.DB.ES.count( index=session.DB.dbname, doc_type="email", body = query )['count'] # Add aggregations for moods query['aggs'] = { } for mood in all_moods: query['aggs'][mood] = { 'sum': { 'field': "mood.%s" % mood } } global_mood_compiled = {} mood_compiled = {} txt = "This chart shows the ten potential mood types as they average on the emails in this period. A score of 100 means a sentiment is highly visible in most emails." gtxt = "This shows the overall estimated mood as a gauge from terrible to good." # If we're comparing against all lists, first do a global query # and compile moods overall if indata.get('relative'): txt = "This chart shows the ten potential mood types on the selected lists as they compare against all mailing lists in the database. A score of 100 here means the sentiment conforms to averages across all lists." gtxt = "This shows the overall estimated mood compared to all lists, as a gauge from terrible to good." global_moods = {} gres = session.DB.ES.search( index=session.DB.dbname, doc_type="email", size = 0, body = query ) for mood, el in gres['aggregations'].items(): # If a mood is not present (iow sum is 0), remove it from the equation by setting to -1 if el['value'] == 0: el['value'] == -1 global_moods[mood] = el['value'] for k, v in global_moods.items(): if v >= 0: global_mood_compiled[k] = int( (v / max(1,gemls)) * 100) # Now, if we have a view (or not distinguishing), ... ss = False if indata.get('source'): query['query']['bool']['must'].append({'term': {'sourceID': indata.get('source')}}) ss = True elif viewList: query['query']['bool']['must'].append({'terms': {'sourceID': viewList}}) ss = True # If we have a view enabled (and distinguish), compile local view against global view # Else, just copy global as local if ss or not indata.get('relative'): res = session.DB.ES.search( index=session.DB.dbname, doc_type="email", size = 0, body = query ) del query['aggs'] # we have to remove these to do a count() emls = session.DB.ES.count( index=session.DB.dbname, doc_type="email", body = query )['count'] moods = {} years = 0 for mood, el in res['aggregations'].items(): if el['value'] == 0: el['value'] == -1 moods[mood] = el['value'] for k, v in moods.items(): if v > 0: mood_compiled[k] = int(100 * int( ( v / max(1,emls)) * 100) / max(1, global_mood_compiled.get(k, 100))) else: mood_compiled = global_mood_compiled # If relative mode and a field is missing, assume 100 (norm) if indata.get('relative'): for M in all_moods: if mood_compiled.get(M, 0) == 0: mood_compiled[M] = 100 # Compile an overall happiness level MAX = max(max(mood_compiled.values()),1) X = 100 if indata.get('relative') else 0 bads = X for B in moods_bad: if mood_compiled.get(B) and mood_compiled[B] > X: bads += mood_compiled[B] happ = 50 goods = X for B in moods_good: if mood_compiled.get(B) and mood_compiled[B] > X: goods += mood_compiled[B] MAX = max(MAX, bads, goods) if bads > 0: happ -= (50*bads/MAX) if goods > 0: happ += (50*goods/MAX) swingometer = max(0, min(100, happ)) # JSON out! JSON_OUT = { 'relativeMode': True, 'text': txt, 'counts': mood_compiled, 'okay': True, 'gauge': { 'key': 'Happiness', 'value': swingometer, 'text': gtxt } } yield json.dumps(JSON_OUT)