public int nextInt()

in core/src/main/java/org/apache/mahout/math/jet/random/Poisson.java [80:294]


  public int nextInt(double theMean) {
    /******************************************************************
     *                                                                *
     * Poisson Distribution - Patchwork Rejection/Inversion           *
     *                                                                *
     ******************************************************************
     *                                                                *
     * For parameter  my < 10  Tabulated Inversion is applied.        *
     * For my >= 10  Patchwork Rejection is employed:                 *
     * The area below the histogram function f(x) is rearranged in    *
     * its body by certain point reflections. Within a large center   *
     * interval variates are sampled efficiently by rejection from    *
     * uniform hats. Rectangular immediate acceptance regions speed   *
     * up the generation. The remaining tails are covered by          *
     * exponential functions.                                         *
     *                                                                *
     *****************************************************************/
    Random gen = getRandomGenerator();

    //double t, g, my_k;

    //double gx, gy, px, py, e, x, xx, delta, v;
    //int sign;

    //static double p,q,p0,pp[36];
    //static long ll,m;

    int m;
    if (theMean < SWITCH_MEAN) { // CASE B: Inversion- start new table and calculate p0
      if (theMean != myOld) {
        myOld = theMean;
        llll = 0;
        p = Math.exp(-theMean);
        q = p;
        p0 = p;
        //for (k=pp.length; --k >=0;) pp[k] = 0;
      }
      m = theMean > 1.0 ? (int) theMean : 1;
      while (true) {
        double u = gen.nextDouble();
        int k = 0;
        if (u <= p0) {
          return k;
        }
        if (llll != 0) {              // Step T. Table comparison
          int i = u > 0.458 ? Math.min(llll, m) : 1;
          for (k = i; k <= llll; k++) {
            if (u <= pp[k]) {
              return k;
            }
          }
          if (llll == 35) {
            continue;
          }
        }
        for (k = llll + 1; k <= 35; k++) { // Step C. Creation of new prob.
          p *= theMean / k;
          q += p;
          pp[k] = q;
          if (u <= q) {
            llll = k;
            return k;
          }
        }
        llll = 35;
      }
      // end my < SWITCH_MEAN
    } else if (theMean < MEAN_MAX) { // CASE A: acceptance complement
      //static double        my_last = -1.0;
      //static long int      m,  k2, k4, k1, k5;
      //static double        dl, dr, r1, r2, r4, r5, ll, lr, l_my, c_pm,
      //             f1, f2, f4, f5, p1, p2, p3, p4, p5, p6;

      m = (int) theMean;
      if (theMean != myLast) { //  set-up
        myLast = theMean;

        // approximate deviation of reflection points k2, k4 from my - 1/2
        double Ds = Math.sqrt(theMean + 0.25);

        // mode m, reflection points k2 and k4, and points k1 and k5, which
        // delimit the centre region of h(x)
        k2 = (int) Math.ceil(theMean - 0.5 - Ds);
        k4 = (int) (theMean - 0.5 + Ds);
        k1 = k2 + k2 - m + 1;
        k5 = k4 + k4 - m;

        // range width of the critical left and right centre region
        dl = k2 - k1;
        dr = k5 - k4;

        // recurrence constants r(k) = p(k)/p(k-1) at k = k1, k2, k4+1, k5+1
        r1 = theMean / k1;
        r2 = theMean / k2;
        r4 = theMean / (k4 + 1);
        r5 = theMean / (k5 + 1);

        // reciprocal values of the scale parameters of expon. tail envelopes
        ll = Math.log(r1);                     // expon. tail left
        lr = -Math.log(r5);                     // expon. tail right

        // Poisson constants, necessary for computing function values f(k)
        lMy = Math.log(theMean);
        cPm = m * lMy - Arithmetic.logFactorial(m);

        // function values f(k) = p(k)/p(m) at k = k2, k4, k1, k5
        f2 = f(k2, lMy, cPm);
        f4 = f(k4, lMy, cPm);
        f1 = f(k1, lMy, cPm);
        f5 = f(k5, lMy, cPm);

        // area of the two centre and the two exponential tail regions
        // area of the two immediate acceptance regions between k2, k4
        p1 = f2 * (dl + 1.0);                    // immed. left
        p2 = f2 * dl + p1;               // centre left
        p3 = f4 * (dr + 1.0) + p2;               // immed. right
        p4 = f4 * dr + p3;               // centre right
        p5 = f1 / ll + p4;               // expon. tail left
        p6 = f5 / lr + p5;               // expon. tail right
      } // end set-up

      while (true) {
        // generate uniform number U -- U(0, p6)
        // case distinction corresponding to U
        double W;
        double V;
        double U;
        int Y;
        int X;
        int Dk;
        if ((U = gen.nextDouble() * p6) < p2) {         // centre left

          // immediate acceptance region R2 = [k2, m) *[0, f2),  X = k2, ... m -1
          if ((V = U - p1) < 0.0) {
            return k2 + (int) (U / f2);
          }
          // immediate acceptance region R1 = [k1, k2)*[0, f1),  X = k1, ... k2-1
          if ((W = V / dl) < f1) {
            return k1 + (int) (V / f1);
          }

          // computation of candidate X < k2, and its counterpart Y > k2
          // either squeeze-acceptance of X or acceptance-rejection of Y
          Dk = gen.nextInt((int) dl) + 1;
          if (W <= f2 - Dk * (f2 - f2 / r2)) {            // quick accept of
            return k2 - Dk;                          // X = k2 - Dk
          }
          if ((V = f2 + f2 - W) < 1.0) {                // quick reject of Y
            Y = k2 + Dk;
            if (V <= f2 + Dk * (1.0 - f2) / (dl + 1.0)) { // quick accept of
              return Y;                             // Y = k2 + Dk
            }
            if (V <= f(Y, lMy, cPm)) {
              return Y;
            }    // final accept of Y
          }
          X = k2 - Dk;
        } else if (U < p4) {                                 // centre right
          // immediate acceptance region R3 = [m, k4+1)*[0, f4), X = m, ... k4
          if ((V = U - p3) < 0.0) {
            return k4 - (int) ((U - p2) / f4);
          }
          // immediate acceptance region R4 = [k4+1, k5+1)*[0, f5)
          if ((W = V / dr) < f5) {
            return k5 - (int) (V / f5);
          }

          // computation of candidate X > k4, and its counterpart Y < k4
          // either squeeze-acceptance of X or acceptance-rejection of Y
          Dk = gen.nextInt((int) dr) + 1;
          if (W <= f4 - Dk * (f4 - f4 * r4)) {             // quick accept of
            return k4 + Dk;                           // X = k4 + Dk
          }
          if ((V = f4 + f4 - W) < 1.0) {                 // quick reject of Y
            Y = k4 - Dk;
            if (V <= f4 + Dk * (1.0 - f4) / dr) {       // quick accept of
              return Y;                             // Y = k4 - Dk
            }
            if (V <= f(Y, lMy, cPm)) {
              return Y;
            }    // final accept of Y
          }
          X = k4 + Dk;
        } else {
          W = gen.nextDouble();
          if (U < p5) {                                  // expon. tail left
            Dk = (int) (1.0 - Math.log(W) / ll);
            if ((X = k1 - Dk) < 0) {
              continue;
            }          // 0 <= X <= k1 - 1
            W *= (U - p4) * ll;                        // W -- U(0, h(x))
            if (W <= f1 - Dk * (f1 - f1 / r1)) {
              return X;
            } // quick accept of X
          } else {                                         // expon. tail right
            Dk = (int) (1.0 - Math.log(W) / lr);
            X = k5 + Dk;                              // X >= k5 + 1
            W *= (U - p5) * lr;                        // W -- U(0, h(x))
            if (W <= f5 - Dk * (f5 - f5 * r5)) {
              return X;
            } // quick accept of X
          }
        }

        // acceptance-rejection test of candidate X from the original area
        // test, whether  W <= f(k),    with  W = U*h(x)  and  U -- U(0, 1)
        // log f(X) = (X - m)*log(my) - log X! + log m!
        if (Math.log(W) <= X * lMy - Arithmetic.logFactorial(X) - cPm) {
          return X;
        }
      }
    } else { // mean is too large
      return (int) theMean;
    }
  }