example/ssd/symbol/legacy_vgg16_ssd_300.py [28:109]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    data = mx.symbol.Variable(name="data")
    label = mx.symbol.Variable(name="label")

    # group 1
    conv1_1 = mx.symbol.Convolution(
        data=data, kernel=(3, 3), pad=(1, 1), num_filter=64, name="conv1_1")
    relu1_1 = mx.symbol.Activation(data=conv1_1, act_type="relu", name="relu1_1")
    conv1_2 = mx.symbol.Convolution(
        data=relu1_1, kernel=(3, 3), pad=(1, 1), num_filter=64, name="conv1_2")
    relu1_2 = mx.symbol.Activation(data=conv1_2, act_type="relu", name="relu1_2")
    pool1 = mx.symbol.Pooling(
        data=relu1_2, pool_type="max", kernel=(2, 2), stride=(2, 2), name="pool1")
    # group 2
    conv2_1 = mx.symbol.Convolution(
        data=pool1, kernel=(3, 3), pad=(1, 1), num_filter=128, name="conv2_1")
    relu2_1 = mx.symbol.Activation(data=conv2_1, act_type="relu", name="relu2_1")
    conv2_2 = mx.symbol.Convolution(
        data=relu2_1, kernel=(3, 3), pad=(1, 1), num_filter=128, name="conv2_2")
    relu2_2 = mx.symbol.Activation(data=conv2_2, act_type="relu", name="relu2_2")
    pool2 = mx.symbol.Pooling(
        data=relu2_2, pool_type="max", kernel=(2, 2), stride=(2, 2), name="pool2")
    # group 3
    conv3_1 = mx.symbol.Convolution(
        data=pool2, kernel=(3, 3), pad=(1, 1), num_filter=256, name="conv3_1")
    relu3_1 = mx.symbol.Activation(data=conv3_1, act_type="relu", name="relu3_1")
    conv3_2 = mx.symbol.Convolution(
        data=relu3_1, kernel=(3, 3), pad=(1, 1), num_filter=256, name="conv3_2")
    relu3_2 = mx.symbol.Activation(data=conv3_2, act_type="relu", name="relu3_2")
    conv3_3 = mx.symbol.Convolution(
        data=relu3_2, kernel=(3, 3), pad=(1, 1), num_filter=256, name="conv3_3")
    relu3_3 = mx.symbol.Activation(data=conv3_3, act_type="relu", name="relu3_3")
    pool3 = mx.symbol.Pooling(
        data=relu3_3, pool_type="max", kernel=(2, 2), stride=(2, 2), \
        pooling_convention="full", name="pool3")
    # group 4
    conv4_1 = mx.symbol.Convolution(
        data=pool3, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv4_1")
    relu4_1 = mx.symbol.Activation(data=conv4_1, act_type="relu", name="relu4_1")
    conv4_2 = mx.symbol.Convolution(
        data=relu4_1, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv4_2")
    relu4_2 = mx.symbol.Activation(data=conv4_2, act_type="relu", name="relu4_2")
    conv4_3 = mx.symbol.Convolution(
        data=relu4_2, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv4_3")
    relu4_3 = mx.symbol.Activation(data=conv4_3, act_type="relu", name="relu4_3")
    pool4 = mx.symbol.Pooling(
        data=relu4_3, pool_type="max", kernel=(2, 2), stride=(2, 2), name="pool4")
    # group 5
    conv5_1 = mx.symbol.Convolution(
        data=pool4, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv5_1")
    relu5_1 = mx.symbol.Activation(data=conv5_1, act_type="relu", name="relu5_1")
    conv5_2 = mx.symbol.Convolution(
        data=relu5_1, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv5_2")
    relu5_2 = mx.symbol.Activation(data=conv5_2, act_type="relu", name="relu5_2")
    conv5_3 = mx.symbol.Convolution(
        data=relu5_2, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv5_3")
    relu5_3 = mx.symbol.Activation(data=conv5_3, act_type="relu", name="relu5_3")
    pool5 = mx.symbol.Pooling(
        data=relu5_3, pool_type="max", kernel=(3, 3), stride=(1, 1),
        pad=(1,1), name="pool5")
    # group 6
    conv6 = mx.symbol.Convolution(
        data=pool5, kernel=(3, 3), pad=(6, 6), dilate=(6, 6),
        num_filter=1024, name="conv6")
    relu6 = mx.symbol.Activation(data=conv6, act_type="relu", name="relu6")
    # drop6 = mx.symbol.Dropout(data=relu6, p=0.5, name="drop6")
    # group 7
    conv7 = mx.symbol.Convolution(
        data=relu6, kernel=(1, 1), pad=(0, 0), num_filter=1024, name="conv7")
    relu7 = mx.symbol.Activation(data=conv7, act_type="relu", name="relu7")
    # drop7 = mx.symbol.Dropout(data=relu7, p=0.5, name="drop7")

    ### ssd extra layers ###
    conv8_1, relu8_1 = legacy_conv_act_layer(relu7, "8_1", 256, kernel=(1,1), pad=(0,0), \
        stride=(1,1), act_type="relu", use_batchnorm=False)
    conv8_2, relu8_2 = legacy_conv_act_layer(relu8_1, "8_2", 512, kernel=(3,3), pad=(1,1), \
        stride=(2,2), act_type="relu", use_batchnorm=False)
    conv9_1, relu9_1 = legacy_conv_act_layer(relu8_2, "9_1", 128, kernel=(1,1), pad=(0,0), \
        stride=(1,1), act_type="relu", use_batchnorm=False)
    conv9_2, relu9_2 = legacy_conv_act_layer(relu9_1, "9_2", 256, kernel=(3,3), pad=(1,1), \
        stride=(2,2), act_type="relu", use_batchnorm=False)
    conv10_1, relu10_1 = legacy_conv_act_layer(relu9_2, "10_1", 128, kernel=(1,1), pad=(0,0), \
        stride=(1,1), act_type="relu", use_batchnorm=False)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



example/ssd/symbol/legacy_vgg16_ssd_512.py [27:108]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    data = mx.symbol.Variable(name="data")
    label = mx.symbol.Variable(name="label")

    # group 1
    conv1_1 = mx.symbol.Convolution(
        data=data, kernel=(3, 3), pad=(1, 1), num_filter=64, name="conv1_1")
    relu1_1 = mx.symbol.Activation(data=conv1_1, act_type="relu", name="relu1_1")
    conv1_2 = mx.symbol.Convolution(
        data=relu1_1, kernel=(3, 3), pad=(1, 1), num_filter=64, name="conv1_2")
    relu1_2 = mx.symbol.Activation(data=conv1_2, act_type="relu", name="relu1_2")
    pool1 = mx.symbol.Pooling(
        data=relu1_2, pool_type="max", kernel=(2, 2), stride=(2, 2), name="pool1")
    # group 2
    conv2_1 = mx.symbol.Convolution(
        data=pool1, kernel=(3, 3), pad=(1, 1), num_filter=128, name="conv2_1")
    relu2_1 = mx.symbol.Activation(data=conv2_1, act_type="relu", name="relu2_1")
    conv2_2 = mx.symbol.Convolution(
        data=relu2_1, kernel=(3, 3), pad=(1, 1), num_filter=128, name="conv2_2")
    relu2_2 = mx.symbol.Activation(data=conv2_2, act_type="relu", name="relu2_2")
    pool2 = mx.symbol.Pooling(
        data=relu2_2, pool_type="max", kernel=(2, 2), stride=(2, 2), name="pool2")
    # group 3
    conv3_1 = mx.symbol.Convolution(
        data=pool2, kernel=(3, 3), pad=(1, 1), num_filter=256, name="conv3_1")
    relu3_1 = mx.symbol.Activation(data=conv3_1, act_type="relu", name="relu3_1")
    conv3_2 = mx.symbol.Convolution(
        data=relu3_1, kernel=(3, 3), pad=(1, 1), num_filter=256, name="conv3_2")
    relu3_2 = mx.symbol.Activation(data=conv3_2, act_type="relu", name="relu3_2")
    conv3_3 = mx.symbol.Convolution(
        data=relu3_2, kernel=(3, 3), pad=(1, 1), num_filter=256, name="conv3_3")
    relu3_3 = mx.symbol.Activation(data=conv3_3, act_type="relu", name="relu3_3")
    pool3 = mx.symbol.Pooling(
        data=relu3_3, pool_type="max", kernel=(2, 2), stride=(2, 2), \
        pooling_convention="full", name="pool3")
    # group 4
    conv4_1 = mx.symbol.Convolution(
        data=pool3, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv4_1")
    relu4_1 = mx.symbol.Activation(data=conv4_1, act_type="relu", name="relu4_1")
    conv4_2 = mx.symbol.Convolution(
        data=relu4_1, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv4_2")
    relu4_2 = mx.symbol.Activation(data=conv4_2, act_type="relu", name="relu4_2")
    conv4_3 = mx.symbol.Convolution(
        data=relu4_2, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv4_3")
    relu4_3 = mx.symbol.Activation(data=conv4_3, act_type="relu", name="relu4_3")
    pool4 = mx.symbol.Pooling(
        data=relu4_3, pool_type="max", kernel=(2, 2), stride=(2, 2), name="pool4")
    # group 5
    conv5_1 = mx.symbol.Convolution(
        data=pool4, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv5_1")
    relu5_1 = mx.symbol.Activation(data=conv5_1, act_type="relu", name="relu5_1")
    conv5_2 = mx.symbol.Convolution(
        data=relu5_1, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv5_2")
    relu5_2 = mx.symbol.Activation(data=conv5_2, act_type="relu", name="relu5_2")
    conv5_3 = mx.symbol.Convolution(
        data=relu5_2, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv5_3")
    relu5_3 = mx.symbol.Activation(data=conv5_3, act_type="relu", name="relu5_3")
    pool5 = mx.symbol.Pooling(
        data=relu5_3, pool_type="max", kernel=(3, 3), stride=(1, 1),
        pad=(1,1), name="pool5")
    # group 6
    conv6 = mx.symbol.Convolution(
        data=pool5, kernel=(3, 3), pad=(6, 6), dilate=(6, 6),
        num_filter=1024, name="conv6")
    relu6 = mx.symbol.Activation(data=conv6, act_type="relu", name="relu6")
    # drop6 = mx.symbol.Dropout(data=relu6, p=0.5, name="drop6")
    # group 7
    conv7 = mx.symbol.Convolution(
        data=relu6, kernel=(1, 1), pad=(0, 0), num_filter=1024, name="conv7")
    relu7 = mx.symbol.Activation(data=conv7, act_type="relu", name="relu7")
    # drop7 = mx.symbol.Dropout(data=relu7, p=0.5, name="drop7")

    ### ssd extra layers ###
    conv8_1, relu8_1 = legacy_conv_act_layer(relu7, "8_1", 256, kernel=(1,1), pad=(0,0), \
        stride=(1,1), act_type="relu", use_batchnorm=False)
    conv8_2, relu8_2 = legacy_conv_act_layer(relu8_1, "8_2", 512, kernel=(3,3), pad=(1,1), \
        stride=(2,2), act_type="relu", use_batchnorm=False)
    conv9_1, relu9_1 = legacy_conv_act_layer(relu8_2, "9_1", 128, kernel=(1,1), pad=(0,0), \
        stride=(1,1), act_type="relu", use_batchnorm=False)
    conv9_2, relu9_2 = legacy_conv_act_layer(relu9_1, "9_2", 256, kernel=(3,3), pad=(1,1), \
        stride=(2,2), act_type="relu", use_batchnorm=False)
    conv10_1, relu10_1 = legacy_conv_act_layer(relu9_2, "10_1", 128, kernel=(1,1), pad=(0,0), \
        stride=(1,1), act_type="relu", use_batchnorm=False)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



