example/kaggle-ndsb1/symbol_dsb.py (26 lines of code) (raw):

import find_mxnet import mxnet as mx def get_symbol(num_classes = 121): net = mx.sym.Variable("data") net = mx.sym.Convolution(data=net, kernel=(5, 5), num_filter=32, pad=(2, 2)) net = mx.sym.Activation(data=net, act_type="relu") net = mx.sym.Convolution(data=net, kernel=(5, 5), num_filter=64, pad=(2, 2)) net = mx.sym.Activation(data=net, act_type="relu") net = mx.sym.Pooling(data=net, pool_type="max", kernel=(3, 3), stride=(2, 2)) # stage 2 net = mx.sym.Convolution(data=net, kernel=(3, 3), num_filter=64, pad=(1, 1)) net = mx.sym.Activation(data=net, act_type="relu") net = mx.sym.Convolution(data=net, kernel=(3, 3), num_filter=64, pad=(1, 1)) net = mx.sym.Activation(data=net, act_type="relu") net = mx.sym.Convolution(data=net, kernel=(3, 3), num_filter=128, pad=(1, 1)) net = mx.sym.Activation(data=net, act_type="relu") net = mx.sym.Pooling(data=net, pool_type="max", kernel=(3, 3), stride=(2, 2)) # stage 3 net = mx.sym.Convolution(data=net, kernel=(3, 3), num_filter=256, pad=(1, 1)) net = mx.sym.Activation(data=net, act_type="relu") net = mx.sym.Convolution(data=net, kernel=(3, 3), num_filter=256, pad=(1, 1)) net = mx.sym.Activation(data=net, act_type="relu") net = mx.sym.Pooling(data=net, pool_type="avg", kernel=(9, 9), stride=(1, 1)) # stage 4 net = mx.sym.Flatten(data=net) net = mx.sym.Dropout(data=net, p=0.25) net = mx.sym.FullyConnected(data=net, num_hidden=121) net = mx.symbol.SoftmaxOutput(data=net, name='softmax') return net