example/kaggle-ndsb1/training_curves.py (26 lines of code) (raw):

## based on https://github.com/dmlc/mxnet/issues/1302 ## Parses the model fit log file and generates a train/val vs epoch plot import matplotlib.pyplot as plt import numpy as np import re import argparse parser = argparse.ArgumentParser(description='Parses log file and generates train/val curves') parser.add_argument('--log-file', type=str,default="log_tr_va", help='the path of log file') args = parser.parse_args() TR_RE = re.compile('.*?]\sTrain-accuracy=([\d\.]+)') VA_RE = re.compile('.*?]\sValidation-accuracy=([\d\.]+)') log = open(args.log_file).read() log_tr = [float(x) for x in TR_RE.findall(log)] log_va = [float(x) for x in VA_RE.findall(log)] idx = np.arange(len(log_tr)) plt.figure(figsize=(8, 6)) plt.xlabel("Epoch") plt.ylabel("Accuracy") plt.plot(idx, log_tr, 'o', linestyle='-', color="r", label="Train accuracy") plt.plot(idx, log_va, 'o', linestyle='-', color="b", label="Validation accuracy") plt.legend(loc="best") plt.xticks(np.arange(min(idx), max(idx)+1, 5)) plt.yticks(np.arange(0, 1, 0.2)) plt.ylim([0,1]) plt.show()