example/nce-loss/wordvec.py (132 lines of code) (raw):

# pylint:skip-file from __future__ import print_function import logging import sys, random, time, math sys.path.insert(0, "../../python") import mxnet as mx import numpy as np from collections import namedtuple from nce import * from operator import itemgetter from optparse import OptionParser def get_net(vocab_size, num_input, num_label): data = mx.sym.Variable('data') label = mx.sym.Variable('label') label_weight = mx.sym.Variable('label_weight') embed_weight = mx.sym.Variable('embed_weight') data_embed = mx.sym.Embedding(data = data, input_dim = vocab_size, weight = embed_weight, output_dim = 100, name = 'data_embed') datavec = mx.sym.SliceChannel(data = data_embed, num_outputs = num_input, squeeze_axis = 1, name = 'data_slice') pred = datavec[0] for i in range(1, num_input): pred = pred + datavec[i] return nce_loss(data = pred, label = label, label_weight = label_weight, embed_weight = embed_weight, vocab_size = vocab_size, num_hidden = 100, num_label = num_label) def load_data(name): buf = open(name).read() tks = buf.split(' ') vocab = {} freq = [0] data = [] for tk in tks: if len(tk) == 0: continue if tk not in vocab: vocab[tk] = len(vocab) + 1 freq.append(0) wid = vocab[tk] data.append(wid) freq[wid] += 1 negative = [] for i, v in enumerate(freq): if i == 0 or v < 5: continue v = int(math.pow(v * 1.0, 0.75)) negative += [i for _ in range(v)] return data, negative, vocab, freq class SimpleBatch(object): def __init__(self, data_names, data, label_names, label): self.data = data self.label = label self.data_names = data_names self.label_names = label_names @property def provide_data(self): return [(n, x.shape) for n, x in zip(self.data_names, self.data)] @property def provide_label(self): return [(n, x.shape) for n, x in zip(self.label_names, self.label)] class DataIter(mx.io.DataIter): def __init__(self, name, batch_size, num_label): super(DataIter, self).__init__() self.batch_size = batch_size self.data, self.negative, self.vocab, self.freq = load_data(name) self.vocab_size = 1 + len(self.vocab) print(self.vocab_size) self.num_label = num_label self.provide_data = [('data', (batch_size, num_label - 1))] self.provide_label = [('label', (self.batch_size, num_label)), ('label_weight', (self.batch_size, num_label))] def sample_ne(self): return self.negative[random.randint(0, len(self.negative) - 1)] def __iter__(self): print('begin') batch_data = [] batch_label = [] batch_label_weight = [] start = random.randint(0, self.num_label - 1) for i in range(start, len(self.data) - self.num_label - start, self.num_label): context = self.data[i: i + self.num_label / 2] \ + self.data[i + 1 + self.num_label / 2: i + self.num_label] target_word = self.data[i + self.num_label / 2] if self.freq[target_word] < 5: continue target = [target_word] \ + [self.sample_ne() for _ in range(self.num_label - 1)] target_weight = [1.0] + [0.0 for _ in range(self.num_label - 1)] batch_data.append(context) batch_label.append(target) batch_label_weight.append(target_weight) if len(batch_data) == self.batch_size: data_all = [mx.nd.array(batch_data)] label_all = [mx.nd.array(batch_label), mx.nd.array(batch_label_weight)] data_names = ['data'] label_names = ['label', 'label_weight'] batch_data = [] batch_label = [] batch_label_weight = [] yield SimpleBatch(data_names, data_all, label_names, label_all) def reset(self): pass if __name__ == '__main__': head = '%(asctime)-15s %(message)s' logging.basicConfig(level=logging.DEBUG, format=head) parser = OptionParser() parser.add_option("-g", "--gpu", action = "store_true", dest = "gpu", default = False, help = "use gpu") batch_size = 256 num_label = 5 data_train = DataIter("./data/text8", batch_size, num_label) network = get_net(data_train.vocab_size, num_label - 1, num_label) options, args = parser.parse_args() devs = mx.cpu() if options.gpu == True: devs = mx.gpu() model = mx.model.FeedForward(ctx = devs, symbol = network, num_epoch = 20, learning_rate = 0.3, momentum = 0.9, wd = 0.0000, initializer=mx.init.Xavier(factor_type="in", magnitude=2.34)) metric = NceAuc() model.fit(X = data_train, eval_metric = metric, batch_end_callback = mx.callback.Speedometer(batch_size, 50),)