example/numpy-ops/numpy_softmax.py (42 lines of code) (raw):

# pylint: skip-file from data import mnist_iterator import mxnet as mx import numpy as np import logging class NumpySoftmax(mx.operator.NumpyOp): def __init__(self): super(NumpySoftmax, self).__init__(False) def list_arguments(self): return ['data', 'label'] def list_outputs(self): return ['output'] def infer_shape(self, in_shape): data_shape = in_shape[0] label_shape = (in_shape[0][0],) output_shape = in_shape[0] return [data_shape, label_shape], [output_shape] def forward(self, in_data, out_data): x = in_data[0] y = out_data[0] y[:] = np.exp(x - x.max(axis=1).reshape((x.shape[0], 1))) y /= y.sum(axis=1).reshape((x.shape[0], 1)) def backward(self, out_grad, in_data, out_data, in_grad): l = in_data[1] l = l.reshape((l.size,)).astype(np.int) y = out_data[0] dx = in_grad[0] dx[:] = y dx[np.arange(l.shape[0]), l] -= 1.0 # define mlp data = mx.symbol.Variable('data') fc1 = mx.symbol.FullyConnected(data = data, name='fc1', num_hidden=128) act1 = mx.symbol.Activation(data = fc1, name='relu1', act_type="relu") fc2 = mx.symbol.FullyConnected(data = act1, name = 'fc2', num_hidden = 64) act2 = mx.symbol.Activation(data = fc2, name='relu2', act_type="relu") fc3 = mx.symbol.FullyConnected(data = act2, name='fc3', num_hidden=10) #mlp = mx.symbol.Softmax(data = fc3, name = 'mlp') mysoftmax = NumpySoftmax() mlp = mysoftmax(data=fc3, name = 'softmax') # data train, val = mnist_iterator(batch_size=100, input_shape = (784,)) # train logging.basicConfig(level=logging.DEBUG) model = mx.model.FeedForward( ctx = mx.cpu(), symbol = mlp, num_epoch = 20, learning_rate = 0.1, momentum = 0.9, wd = 0.00001) model.fit(X=train, eval_data=val)