example/ssd/symbol/legacy_vgg16_ssd_512.py (128 lines of code) (raw):
import mxnet as mx
from common import legacy_conv_act_layer
from common import multibox_layer
def get_symbol_train(num_classes=20, nms_thresh=0.5, force_suppress=False, nms_topk=400):
"""
Single-shot multi-box detection with VGG 16 layers ConvNet
This is a modified version, with fc6/fc7 layers replaced by conv layers
And the network is slightly smaller than original VGG 16 network
This is a training network with losses
Parameters:
----------
num_classes: int
number of object classes not including background
nms_thresh : float
non-maximum suppression threshold
force_suppress : boolean
whether suppress different class objects
nms_topk : int
apply NMS to top K detections
Returns:
----------
mx.Symbol
"""
data = mx.symbol.Variable(name="data")
label = mx.symbol.Variable(name="label")
# group 1
conv1_1 = mx.symbol.Convolution(
data=data, kernel=(3, 3), pad=(1, 1), num_filter=64, name="conv1_1")
relu1_1 = mx.symbol.Activation(data=conv1_1, act_type="relu", name="relu1_1")
conv1_2 = mx.symbol.Convolution(
data=relu1_1, kernel=(3, 3), pad=(1, 1), num_filter=64, name="conv1_2")
relu1_2 = mx.symbol.Activation(data=conv1_2, act_type="relu", name="relu1_2")
pool1 = mx.symbol.Pooling(
data=relu1_2, pool_type="max", kernel=(2, 2), stride=(2, 2), name="pool1")
# group 2
conv2_1 = mx.symbol.Convolution(
data=pool1, kernel=(3, 3), pad=(1, 1), num_filter=128, name="conv2_1")
relu2_1 = mx.symbol.Activation(data=conv2_1, act_type="relu", name="relu2_1")
conv2_2 = mx.symbol.Convolution(
data=relu2_1, kernel=(3, 3), pad=(1, 1), num_filter=128, name="conv2_2")
relu2_2 = mx.symbol.Activation(data=conv2_2, act_type="relu", name="relu2_2")
pool2 = mx.symbol.Pooling(
data=relu2_2, pool_type="max", kernel=(2, 2), stride=(2, 2), name="pool2")
# group 3
conv3_1 = mx.symbol.Convolution(
data=pool2, kernel=(3, 3), pad=(1, 1), num_filter=256, name="conv3_1")
relu3_1 = mx.symbol.Activation(data=conv3_1, act_type="relu", name="relu3_1")
conv3_2 = mx.symbol.Convolution(
data=relu3_1, kernel=(3, 3), pad=(1, 1), num_filter=256, name="conv3_2")
relu3_2 = mx.symbol.Activation(data=conv3_2, act_type="relu", name="relu3_2")
conv3_3 = mx.symbol.Convolution(
data=relu3_2, kernel=(3, 3), pad=(1, 1), num_filter=256, name="conv3_3")
relu3_3 = mx.symbol.Activation(data=conv3_3, act_type="relu", name="relu3_3")
pool3 = mx.symbol.Pooling(
data=relu3_3, pool_type="max", kernel=(2, 2), stride=(2, 2), \
pooling_convention="full", name="pool3")
# group 4
conv4_1 = mx.symbol.Convolution(
data=pool3, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv4_1")
relu4_1 = mx.symbol.Activation(data=conv4_1, act_type="relu", name="relu4_1")
conv4_2 = mx.symbol.Convolution(
data=relu4_1, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv4_2")
relu4_2 = mx.symbol.Activation(data=conv4_2, act_type="relu", name="relu4_2")
conv4_3 = mx.symbol.Convolution(
data=relu4_2, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv4_3")
relu4_3 = mx.symbol.Activation(data=conv4_3, act_type="relu", name="relu4_3")
pool4 = mx.symbol.Pooling(
data=relu4_3, pool_type="max", kernel=(2, 2), stride=(2, 2), name="pool4")
# group 5
conv5_1 = mx.symbol.Convolution(
data=pool4, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv5_1")
relu5_1 = mx.symbol.Activation(data=conv5_1, act_type="relu", name="relu5_1")
conv5_2 = mx.symbol.Convolution(
data=relu5_1, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv5_2")
relu5_2 = mx.symbol.Activation(data=conv5_2, act_type="relu", name="relu5_2")
conv5_3 = mx.symbol.Convolution(
data=relu5_2, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv5_3")
relu5_3 = mx.symbol.Activation(data=conv5_3, act_type="relu", name="relu5_3")
pool5 = mx.symbol.Pooling(
data=relu5_3, pool_type="max", kernel=(3, 3), stride=(1, 1),
pad=(1,1), name="pool5")
# group 6
conv6 = mx.symbol.Convolution(
data=pool5, kernel=(3, 3), pad=(6, 6), dilate=(6, 6),
num_filter=1024, name="conv6")
relu6 = mx.symbol.Activation(data=conv6, act_type="relu", name="relu6")
# drop6 = mx.symbol.Dropout(data=relu6, p=0.5, name="drop6")
# group 7
conv7 = mx.symbol.Convolution(
data=relu6, kernel=(1, 1), pad=(0, 0), num_filter=1024, name="conv7")
relu7 = mx.symbol.Activation(data=conv7, act_type="relu", name="relu7")
# drop7 = mx.symbol.Dropout(data=relu7, p=0.5, name="drop7")
### ssd extra layers ###
conv8_1, relu8_1 = legacy_conv_act_layer(relu7, "8_1", 256, kernel=(1,1), pad=(0,0), \
stride=(1,1), act_type="relu", use_batchnorm=False)
conv8_2, relu8_2 = legacy_conv_act_layer(relu8_1, "8_2", 512, kernel=(3,3), pad=(1,1), \
stride=(2,2), act_type="relu", use_batchnorm=False)
conv9_1, relu9_1 = legacy_conv_act_layer(relu8_2, "9_1", 128, kernel=(1,1), pad=(0,0), \
stride=(1,1), act_type="relu", use_batchnorm=False)
conv9_2, relu9_2 = legacy_conv_act_layer(relu9_1, "9_2", 256, kernel=(3,3), pad=(1,1), \
stride=(2,2), act_type="relu", use_batchnorm=False)
conv10_1, relu10_1 = legacy_conv_act_layer(relu9_2, "10_1", 128, kernel=(1,1), pad=(0,0), \
stride=(1,1), act_type="relu", use_batchnorm=False)
conv10_2, relu10_2 = legacy_conv_act_layer(relu10_1, "10_2", 256, kernel=(3,3), pad=(1,1), \
stride=(2,2), act_type="relu", use_batchnorm=False)
conv11_1, relu11_1 = legacy_conv_act_layer(relu10_2, "11_1", 128, kernel=(1,1), pad=(0,0), \
stride=(1,1), act_type="relu", use_batchnorm=False)
conv11_2, relu11_2 = legacy_conv_act_layer(relu11_1, "11_2", 256, kernel=(3,3), pad=(1,1), \
stride=(2,2), act_type="relu", use_batchnorm=False)
conv12_1, relu12_1 = legacy_conv_act_layer(relu11_2, "12_1", 128, kernel=(1,1), pad=(0,0), \
stride=(1,1), act_type="relu", use_batchnorm=False)
conv12_2, relu12_2 = legacy_conv_act_layer(relu12_1, "12_2", 256, kernel=(4,4), pad=(1,1), \
stride=(1,1), act_type="relu", use_batchnorm=False)
# specific parameters for VGG16 network
from_layers = [relu4_3, relu7, relu8_2, relu9_2, relu10_2, relu11_2, relu12_2]
sizes = [[.07, .1025], [.15,.2121], [.3, .3674], [.45, .5196], [.6, .6708], \
[.75, .8216], [.9, .9721]]
ratios = [[1,2,.5], [1,2,.5,3,1./3], [1,2,.5,3,1./3], [1,2,.5,3,1./3], \
[1,2,.5,3,1./3], [1,2,.5], [1,2,.5]]
normalizations = [20, -1, -1, -1, -1, -1, -1]
steps = [ x / 512.0 for x in [8, 16, 32, 64, 128, 256, 512]]
num_channels = [512]
loc_preds, cls_preds, anchor_boxes = multibox_layer(from_layers, \
num_classes, sizes=sizes, ratios=ratios, normalization=normalizations, \
num_channels=num_channels, clip=False, interm_layer=0, steps=steps)
tmp = mx.contrib.symbol.MultiBoxTarget(
*[anchor_boxes, label, cls_preds], overlap_threshold=.5, \
ignore_label=-1, negative_mining_ratio=3, minimum_negative_samples=0, \
negative_mining_thresh=.5, variances=(0.1, 0.1, 0.2, 0.2),
name="multibox_target")
loc_target = tmp[0]
loc_target_mask = tmp[1]
cls_target = tmp[2]
cls_prob = mx.symbol.SoftmaxOutput(data=cls_preds, label=cls_target, \
ignore_label=-1, use_ignore=True, grad_scale=1., multi_output=True, \
normalization='valid', name="cls_prob")
loc_loss_ = mx.symbol.smooth_l1(name="loc_loss_", \
data=loc_target_mask * (loc_preds - loc_target), scalar=1.0)
loc_loss = mx.symbol.MakeLoss(loc_loss_, grad_scale=1., \
normalization='valid', name="loc_loss")
# monitoring training status
cls_label = mx.symbol.MakeLoss(data=cls_target, grad_scale=0, name="cls_label")
det = mx.contrib.symbol.MultiBoxDetection(*[cls_prob, loc_preds, anchor_boxes], \
name="detection", nms_threshold=nms_thresh, force_suppress=force_suppress,
variances=(0.1, 0.1, 0.2, 0.2), nms_topk=nms_topk)
det = mx.symbol.MakeLoss(data=det, grad_scale=0, name="det_out")
# group output
out = mx.symbol.Group([cls_prob, loc_loss, cls_label, det])
return out
def get_symbol(num_classes=20, nms_thresh=0.5, force_suppress=False, nms_topk=400):
"""
Single-shot multi-box detection with VGG 16 layers ConvNet
This is a modified version, with fc6/fc7 layers replaced by conv layers
And the network is slightly smaller than original VGG 16 network
This is the detection network
Parameters:
----------
num_classes: int
number of object classes not including background
nms_thresh : float
threshold of overlap for non-maximum suppression
force_suppress : boolean
whether suppress different class objects
nms_topk : int
apply NMS to top K detections
Returns:
----------
mx.Symbol
"""
net = get_symbol_train(num_classes)
cls_preds = net.get_internals()["multibox_cls_pred_output"]
loc_preds = net.get_internals()["multibox_loc_pred_output"]
anchor_boxes = net.get_internals()["multibox_anchors_output"]
cls_prob = mx.symbol.SoftmaxActivation(data=cls_preds, mode='channel', \
name='cls_prob')
out = mx.contrib.symbol.MultiBoxDetection(*[cls_prob, loc_preds, anchor_boxes], \
name="detection", nms_threshold=nms_thresh, force_suppress=force_suppress,
variances=(0.1, 0.1, 0.2, 0.2), nms_topk=nms_topk)
return out