example/ssd/symbol/vgg16_reduced.py (69 lines of code) (raw):
import mxnet as mx
def get_symbol(num_classes=1000, **kwargs):
"""
VGG 16 layers network
This is a modified version, with fc6/fc7 layers replaced by conv layers
And the network is slightly smaller than original VGG 16 network
"""
data = mx.symbol.Variable(name="data")
label = mx.symbol.Variable(name="label")
# group 1
conv1_1 = mx.symbol.Convolution(
data=data, kernel=(3, 3), pad=(1, 1), num_filter=64, name="conv1_1")
relu1_1 = mx.symbol.Activation(data=conv1_1, act_type="relu", name="relu1_1")
conv1_2 = mx.symbol.Convolution(
data=relu1_1, kernel=(3, 3), pad=(1, 1), num_filter=64, name="conv1_2")
relu1_2 = mx.symbol.Activation(data=conv1_2, act_type="relu", name="relu1_2")
pool1 = mx.symbol.Pooling(
data=relu1_2, pool_type="max", kernel=(2, 2), stride=(2, 2), name="pool1")
# group 2
conv2_1 = mx.symbol.Convolution(
data=pool1, kernel=(3, 3), pad=(1, 1), num_filter=128, name="conv2_1")
relu2_1 = mx.symbol.Activation(data=conv2_1, act_type="relu", name="relu2_1")
conv2_2 = mx.symbol.Convolution(
data=relu2_1, kernel=(3, 3), pad=(1, 1), num_filter=128, name="conv2_2")
relu2_2 = mx.symbol.Activation(data=conv2_2, act_type="relu", name="relu2_2")
pool2 = mx.symbol.Pooling(
data=relu2_2, pool_type="max", kernel=(2, 2), stride=(2, 2), name="pool2")
# group 3
conv3_1 = mx.symbol.Convolution(
data=pool2, kernel=(3, 3), pad=(1, 1), num_filter=256, name="conv3_1")
relu3_1 = mx.symbol.Activation(data=conv3_1, act_type="relu", name="relu3_1")
conv3_2 = mx.symbol.Convolution(
data=relu3_1, kernel=(3, 3), pad=(1, 1), num_filter=256, name="conv3_2")
relu3_2 = mx.symbol.Activation(data=conv3_2, act_type="relu", name="relu3_2")
conv3_3 = mx.symbol.Convolution(
data=relu3_2, kernel=(3, 3), pad=(1, 1), num_filter=256, name="conv3_3")
relu3_3 = mx.symbol.Activation(data=conv3_3, act_type="relu", name="relu3_3")
pool3 = mx.symbol.Pooling(
data=relu3_3, pool_type="max", kernel=(2, 2), stride=(2, 2), \
pooling_convention="full", name="pool3")
# group 4
conv4_1 = mx.symbol.Convolution(
data=pool3, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv4_1")
relu4_1 = mx.symbol.Activation(data=conv4_1, act_type="relu", name="relu4_1")
conv4_2 = mx.symbol.Convolution(
data=relu4_1, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv4_2")
relu4_2 = mx.symbol.Activation(data=conv4_2, act_type="relu", name="relu4_2")
conv4_3 = mx.symbol.Convolution(
data=relu4_2, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv4_3")
relu4_3 = mx.symbol.Activation(data=conv4_3, act_type="relu", name="relu4_3")
pool4 = mx.symbol.Pooling(
data=relu4_3, pool_type="max", kernel=(2, 2), stride=(2, 2), name="pool4")
# group 5
conv5_1 = mx.symbol.Convolution(
data=pool4, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv5_1")
relu5_1 = mx.symbol.Activation(data=conv5_1, act_type="relu", name="relu5_1")
conv5_2 = mx.symbol.Convolution(
data=relu5_1, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv5_2")
relu5_2 = mx.symbol.Activation(data=conv5_2, act_type="relu", name="relu5_2")
conv5_3 = mx.symbol.Convolution(
data=relu5_2, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv5_3")
relu5_3 = mx.symbol.Activation(data=conv5_3, act_type="relu", name="relu5_3")
pool5 = mx.symbol.Pooling(
data=relu5_3, pool_type="max", kernel=(3, 3), stride=(1, 1),
pad=(1,1), name="pool5")
# group 6
conv6 = mx.symbol.Convolution(
data=pool5, kernel=(3, 3), pad=(6, 6), dilate=(6, 6),
num_filter=1024, name="fc6")
relu6 = mx.symbol.Activation(data=conv6, act_type="relu", name="relu6")
# drop6 = mx.symbol.Dropout(data=relu6, p=0.5, name="drop6")
# group 7
conv7 = mx.symbol.Convolution(
data=relu6, kernel=(1, 1), pad=(0, 0), num_filter=1024, name="fc7")
relu7 = mx.symbol.Activation(data=conv7, act_type="relu", name="relu7")
# drop7 = mx.symbol.Dropout(data=relu7, p=0.5, name="drop7")
gpool = mx.symbol.Pooling(data=relu7, pool_type='avg', kernel=(7, 7),
global_pool=True, name='global_pool')
conv8 = mx.symbol.Convolution(data=gpool, num_filter=num_classes, kernel=(1, 1),
name='fc8')
flat = mx.symbol.Flatten(data=conv8)
softmax = mx.symbol.SoftmaxOutput(data=flat, name='softmax')
return softmax