perl-package/AI-MXNet/lib/AI/MXNet/Module/Base.pm (471 lines of code) (raw):

package AI::MXNet::BatchEndParam; use Mouse; use AI::MXNet::Function::Parameters; has [qw/epoch nbatch/] => (is => 'rw', isa => 'Int'); has 'eval_metric' => (is => 'rw', isa => 'AI::MXNet::EvalMetric'); package AI::MXNet::Module::Base; use Mouse; use AI::MXNet::Base; use Time::HiRes qw(time); =head1 NAME AI::MXNet::Module::Base - Base class for AI::MXNet::Module and AI::MXNet::Module::Bucketing =cut func _as_list($obj) { return [$obj] if ((ref($obj)//'') ne 'ARRAY'); return $obj; } # Check that all input names are in symbol's argument method _check_input_names( AI::MXNet::Symbol $symbol, ArrayRef[Str] $names, Str $typename, Bool $throw ) { my @candidates; my %args = map { push @candidates, $_ if not /_(?:weight|bias|gamma|beta)$/; $_ => 1 } @{ $symbol->list_arguments }; for my $name (@$names) { my $msg; if(not exists $args{$name} and $name ne 'softmax_label') { $msg = sprintf("\033[91mYou created Module with Module(..., %s_names=%s) but " ."input with name '%s' is not found in symbol.list_arguments(). " ."Did you mean one of:\n\t%s\033[0m", $typename, "@$names", $name, join("\n\t", @candidates) ); if($throw) { confess($msg); } else { AI::MXNet::Logging->warning($msg); } } } } # Check that input names matches input data descriptors method _check_names_match( ArrayRef[Str] $data_names, ArrayRef[NameShapeOrDataDesc] $data_shapes, Str $name, Bool $throw ) { return if (not @$data_shapes and @$data_names == 1 and $data_names->[0] eq 'softmax_label'); my @actual = map { @{$_}[0] } @{ $data_shapes }; if("@$data_names" ne "@actual") { my $msg = sprintf( "Data provided by %s_shapes don't match names specified by %s_names (%s vs. %s)", $name, $name, "@$data_shapes", "@$data_names" ); if($throw) { confess($msg); } else { AI::MXNet::Logging->warning($msg); } } } method _parse_data_desc( ArrayRef[Str] $data_names, Maybe[ArrayRef[Str]] $label_names, ArrayRef[NameShapeOrDataDesc] $data_shapes, Maybe[ArrayRef[NameShapeOrDataDesc]] $label_shapes ) { $data_shapes = [map { blessed $_ ? $_ : AI::MXNet::DataDesc->new(@$_) } @$data_shapes]; $self->_check_names_match($data_names, $data_shapes, 'data', 1); if($label_shapes) { $label_shapes = [map { blessed $_ ? $_ : AI::MXNet::DataDesc->new(@$_) } @$label_shapes]; $self->_check_names_match($label_names, $label_shapes, 'label', 0); } else { $self->_check_names_match($label_names, [], 'label', 0); } return ($data_shapes, $label_shapes); } =head1 DESCRIPTION The base class of a modules. A module represents a computation component. The design purpose of a module is that it abstract a computation "machine", that one can run forward, backward, update parameters, etc. We aim to make the APIs easy to use, especially in the case when we need to use imperative API to work with multiple modules (e.g. stochastic depth network). A module has several states: - Initial state. Memory is not allocated yet, not ready for computation yet. - Binded. Shapes for inputs, outputs, and parameters are all known, memory allocated, ready for computation. - Parameter initialized. For modules with parameters, doing computation before initializing the parameters might result in undefined outputs. - Optimizer installed. An optimizer can be installed to a module. After this, the parameters of the module can be updated according to the optimizer after gradients are computed (forward-backward). In order for a module to interact with others, a module should be able to report the following information in its raw stage (before binded) - data_names: array ref of string indicating the names of required data. - output_names: array ref of string indicating the names of required outputs. And also the following richer information after binded: - state information - binded: bool, indicating whether the memory buffers needed for computation has been allocated. - for_training: whether the module is binded for training (if binded). - params_initialized: bool, indicating whether the parameters of this modules has been initialized. - optimizer_initialized: bool, indicating whether an optimizer is defined and initialized. - inputs_need_grad: bool, indicating whether gradients with respect to the input data is needed. Might be useful when implementing composition of modules. - input/output information - data_shapes: am array ref of [name, shape]. In theory, since the memory is allocated, we could directly provide the data arrays. But in the case of data parallelization, the data arrays might not be of the same shape as viewed from the external world. - label_shapes: an array ref of [name, shape]. This might be [] if the module does not need labels (e.g. it does not contains a loss function at the top), or a module is not binded for training. - output_shapes: an array ref of [name, shape] for outputs of the module. - parameters (for modules with parameters) - get_params(): return an array ($arg_params, $aux_params). Each of those is a hash ref of name to NDArray mapping. Those NDArrays always on CPU. The actual parameters used for computing might be on other devices (GPUs), this function will retrieve (a copy of) the latest parameters. Therefore, modifying - get_params($arg_params, $aux_params): assign parameters to the devices doing the computation. - init_params(...): a more flexible interface to assign or initialize the parameters. - setup - bind(): prepare environment for computation. - init_optimizer(): install optimizer for parameter updating. - computation - forward(data_batch): forward operation. - backward(out_grads=): backward operation. - update(): update parameters according to installed optimizer. - get_outputs(): get outputs of the previous forward operation. - get_input_grads(): get the gradients with respect to the inputs computed in the previous backward operation. - update_metric(metric, labels): update performance metric for the previous forward computed results. - other properties (mostly for backward compatability) - symbol: the underlying symbolic graph for this module (if any) This property is not necessarily constant. For example, for AI::MXNet::Module::Bucketing, this property is simply the *current* symbol being used. For other modules, this value might not be well defined. When those intermediate-level API are implemented properly, the following high-level API will be automatically available for a module: - fit: train the module parameters on a data set - predict: run prediction on a data set and collect outputs - score: run prediction on a data set and evaluate performance =cut has 'logger' => (is => 'rw', default => sub { AI::MXNet::Logging->get_logger }); has '_symbol' => (is => 'rw', init_arg => 'symbol', isa => 'AI::MXNet::Symbol'); has [ qw/binded for_training inputs_need_grad params_initialized optimizer_initialized/ ] => (is => 'rw', isa => 'Bool', init_arg => undef, default => 0); ################################################################################ # High Level API ################################################################################ =head2 forward_backward A convenient function that calls both forward and backward. =cut method forward_backward(AI::MXNet::DataBatch $data_batch) { $self->forward($data_batch, is_train => 1); $self->backward(); } =head2 score Run prediction on eval_data and evaluate the performance according to eval_metric. Parameters ---------- $eval_data : AI::MXNet::DataIter $eval_metric : AI::MXNet::EvalMetric :$num_batch= : Maybe[Int] Number of batches to run. Default is undef, indicating run until the AI::MXNet::DataIter finishes. :$batch_end_callback= : Maybe[Callback] Could also be a array ref of functions. :$reset=1 : Bool Default 1, indicating whether we should reset $eval_data before starting evaluating. $epoch=0 : Int Default is 0. For compatibility, this will be passed to callbacks (if any). During training, this will correspond to the training epoch number. =cut method score( AI::MXNet::DataIter $eval_data, EvalMetric $eval_metric, Maybe[Int] :$num_batch=, Maybe[Callback]|ArrayRef[Callback] :$batch_end_callback=, Maybe[Callback]|ArrayRef[Callback] :$score_end_callback=, Bool :$reset=1, Int :$epoch=0 ) { assert($self->binded and $self->params_initialized); $eval_data->reset if $reset; if(not blessed $eval_metric or not $eval_metric->isa('AI::MXNet::EvalMetric')) { $eval_metric = AI::MXNet::Metric->create($eval_metric); } $eval_metric->reset(); my $actual_num_batch = 0; my $nbatch = 0; while(my $eval_batch = <$eval_data>) { last if (defined $num_batch and $nbatch == $num_batch); $self->forward($eval_batch, is_train => 0); $self->update_metric($eval_metric, $eval_batch->label); if (defined $batch_end_callback) { my $batch_end_params = AI::MXNet::BatchEndParam->new( epoch => $epoch, nbatch => $nbatch, eval_metric => $eval_metric ); for my $callback (@{ _as_list($batch_end_callback) }) { &{$callback}($batch_end_params); } } $actual_num_batch++; $nbatch++ } if($score_end_callback) { my $params = AI::MXNet::BatchEndParam->new( epoch => $epoch, nbatch => $actual_num_batch, eval_metric => $eval_metric, ); for my $callback (@{ _as_list($score_end_callback) }) { &{callback}($params); } } return $eval_metric->get_name_value; } =head2 iter_predict Iterate over predictions. Parameters ---------- $eval_data : AI::MXNet::DataIter :$num_batch= : Maybe[Int] Default is undef, indicating running all the batches in the data iterator. :$reset=1 : bool Default is 1, indicating whether we should reset the data iter before start doing prediction. =cut method iter_predict(AI::MXNet::DataIter $eval_data, Maybe[Int] :$num_batch=, Bool :$reset=1) { assert($self->binded and $self->params_initialized); if($reset) { $eval_data->reset; } my $nbatch = 0; my @out; while(my $eval_batch = <$eval_data>) { last if defined $num_batch and $nbatch == $num_batch; $self->forward($eval_batch, is_train => 0); my $pad = $eval_batch->pad; my $outputs = [ map { $_->slice([0, $_->shape->[0] - ($pad//0) - 1]) } @{ $self->get_outputs() } ]; push @out, [$outputs, $nbatch, $eval_batch]; $nbatch++; } return @out; } =head2 predict Run prediction and collect the outputs. Parameters ---------- $eval_data : AI::MXNet::DataIter :$num_batch= : Maybe[Int] Default is undef, indicating running all the batches in the data iterator. :$merge_batches=1 : Bool Default is 1. :$reset=1 : Bool Default is 1, indicating whether we should reset the data iter before start doing prediction. :$always_output_list=0 : Bool Default is 0, see the doc for return values. Returns ------- When $merge_batches is 1 (by default), the return value will be an array ref [$out1, $out2, $out3] where each element is concatenation of the outputs for all the mini-batches. If $always_output_list` also is 0 (by default), then in the case of a single output, $out1 is returned in stead of [$out1]. When $merge_batches is 0, the return value will be a nested array ref like [[$out1_batch1, $out2_batch1], [$out1_batch2], ...]. This mode is useful because in some cases (e.g. bucketing), the module does not necessarily produce the same number of outputs. The objects in the results are AI::MXNet::NDArray`s. If you need to work with pdl array, just call ->aspdl() on each AI::MXNet::NDArray. =cut method predict( AI::MXNet::DataIter $eval_data, Maybe[Int] :$num_batch=, Bool :$merge_batches=1, Bool :$reset=1, Bool :$always_output_list=0 ) { assert($self->binded and $self->params_initialized); $eval_data->reset() if $reset; my @output_list; my $nbatch = 0; while(my $eval_batch = <$eval_data>) { last if defined $num_batch and $nbatch == $num_batch; $self->forward($eval_batch, is_train => 0); my $pad = $eval_batch->pad; my $outputs = [map { $_->slice([0, $_->shape->[0]-($pad//0)-1])->copy } @{ $self->get_outputs }]; push @output_list, $outputs; } return () unless @output_list; if($merge_batches) { my $num_outputs = @{ $output_list[0] }; for my $out (@output_list) { unless(@{ $out } == $num_outputs) { confess('Cannot merge batches, as num of outputs is not the same ' .'in mini-batches. Maybe bucketing is used?'); } } my @output_list2; for my $i (0..$num_outputs-1) { push @output_list2, AI::MXNet::NDArray->concatenate([map { $_->[$i] } @output_list]); } if($num_outputs == 1 and not $always_output_list) { return $output_list2[0]; } return @output_list2; } return @output_list; } =head2 fit Train the module parameters. Parameters ---------- $train_data : AI::MXNet::DataIter :$eval_data= : Maybe[AI::MXNet::DataIter] If not undef, it will be used as a validation set to evaluate the performance after each epoch. :$eval_metric='acc' : str or AI::MXNet::EvalMetric subclass object. Default is 'accuracy'. The performance measure used to display during training. Other possible predefined metrics are: 'ce' (CrossEntropy), 'f1', 'mae', 'mse', 'rmse', 'top_k_accuracy' :$epoch_end_callback= : Maybe[Callback]|ArrayRef[Callback] function or array ref of functions. Each callback will be called with the current $epoch, $symbol, $arg_params and $aux_params. :$batch_end_callback= : Maybe[Callback]|ArrayRef[Callback] function or array ref of functions. Each callback will be called with a AI::MXNet::BatchEndParam. :$kvstore='local' : str or AI::MXNet::KVStore Default is 'local'. :$optimizer : str or AI::MXNet::Optimizer Default is 'sgd' :$optimizer_params : hash ref Default { learning_rate => 0.01 }. The parameters for the optimizer constructor. :$eval_end_callback= : Maybe[Callback]|ArrayRef[Callback] function or array ref of functions These will be called at the end of each full evaluation, with the metrics over the entire evaluation set. :$eval_batch_end_callback : Maybe[Callback]|ArrayRef[Callback] function or array ref of functions These will be called at the end of each minibatch during evaluation :$initializer= : Initializer Will be called to initialize the module parameters if not already initialized. :$arg_params= : hash ref Default undef, if not undef, must be an existing parameters from a trained model or loaded from a checkpoint (previously saved model). In this case, the value here will be used to initialize the module parameters, unless they are already initialized by the user via a call to init_params or fit. $arg_params have higher priority than the $initializer. :$aux_params= : hash ref Default is undef. This is similar to the $arg_params, except for auxiliary states. :$allow_missing=0 : Bool Default is 0. Indicates whether we allow missing parameters when $arg_params and $aux_params are not undefined. If this is 1, then the missing parameters will be initialized via the $initializer. :$force_rebind=0 : Bool Default is 0. Whether to force rebinding the executors if already binded. :$force_init=0 : Bool Default is 0. Indicates whether we should force initialization even if the parameters are already initialized. :$begin_epoch=0 : Int Default is 0. Indicates the starting epoch. Usually, if we are resuming from a checkpoint saved at a previous training phase at epoch N, then we should specify this value as N+1. :$num_epoch : Int Number of epochs for the training. =cut method fit( AI::MXNet::DataIter $train_data, Maybe[AI::MXNet::DataIter] :$eval_data=, EvalMetric :$eval_metric='acc', Maybe[Callback]|ArrayRef[Callback] :$epoch_end_callback=, Maybe[Callback]|ArrayRef[Callback] :$batch_end_callback=, Str :$kvstore='local', Optimizer :$optimizer='sgd', HashRef :$optimizer_params={ learning_rate => 0.01 }, Maybe[Callback]|ArrayRef[Callback] :$eval_end_callback=, Maybe[Callback]|ArrayRef[Callback] :$eval_batch_end_callback=, AI::MXNet::Initializer :$initializer=AI::MXNet::Initializer->Uniform(scale => 0.01), Maybe[HashRef[AI::MXNet::NDArray]] :$arg_params=, Maybe[HashRef[AI::MXNet::NDArray]] :$aux_params=, Bool :$allow_missing=0, Bool :$force_rebind=0, Bool :$force_init=0, Int :$begin_epoch=0, Int :$num_epoch, Maybe[EvalMetric] :$validation_metric=, Maybe[AI::MXNet::Monitor] :$monitor= ) { $self->bind( data_shapes => $train_data->provide_data, label_shapes => $train_data->provide_label, for_training => 1, force_rebind => $force_rebind ); if($monitor) { $self->install_monitor($monitor); } $self->init_params( initializer => $initializer, arg_params => $arg_params, aux_params => $aux_params, allow_missing => $allow_missing, force_init => $force_init ); $self->init_optimizer( kvstore => $kvstore, optimizer => $optimizer, optimizer_params => $optimizer_params ); if(not defined $validation_metric) { $validation_metric = $eval_metric; } $eval_metric = AI::MXNet::Metric->create($eval_metric) unless blessed $eval_metric; ################################################################################ # training loop ################################################################################ for my $epoch ($begin_epoch..$num_epoch-1) { my $tic = time; $eval_metric->reset; my $nbatch = 0; my $end_of_batch = 0; my $next_data_batch = <$train_data>; while(not $end_of_batch) { my $data_batch = $next_data_batch; $monitor->tic if $monitor; $self->forward_backward($data_batch); $self->update; $next_data_batch = <$train_data>; if(defined $next_data_batch) { $self->prepare($next_data_batch); } else { $end_of_batch = 1; } $self->update_metric($eval_metric, $data_batch->label); $monitor->toc_print if $monitor; if(defined $batch_end_callback) { my $batch_end_params = AI::MXNet::BatchEndParam->new( epoch => $epoch, nbatch => $nbatch, eval_metric => $eval_metric ); for my $callback (@{ _as_list($batch_end_callback) }) { &{$callback}($batch_end_params); } } $nbatch++; } # one epoch of training is finished my $name_value = $eval_metric->get_name_value; while(my ($name, $val) = each %{ $name_value }) { $self->logger->info('Epoch[%d] Train-%s=%f', $epoch, $name, $val); } my $toc = time; $self->logger->info('Epoch[%d] Time cost=%.3f', $epoch, ($toc-$tic)); # sync aux params across devices my ($arg_params, $aux_params) = $self->get_params; $self->set_params($arg_params, $aux_params); if($epoch_end_callback) { for my $callback (@{ _as_list($epoch_end_callback) }) { &{$callback}($epoch, $self->get_symbol, $arg_params, $aux_params); } } #---------------------------------------- # evaluation on validation set if(defined $eval_data) { my $res = $self->score( $eval_data, $validation_metric, score_end_callback => $eval_end_callback, batch_end_callback => $eval_batch_end_callback, epoch => $epoch ); #TODO: pull this into default while(my ($name, $val) = each %{ $res }) { $self->logger->info('Epoch[%d] Validation-%s=%f', $epoch, $name, $val); } } # end of 1 epoch, reset the data-iter for another epoch $train_data->reset; } } ################################################################################ # Symbol information ################################################################################ =head2 get_symbol The symbol used by this module. =cut method get_symbol() { $self->symbol } =head2 data_names An array ref of names for data required by this module. =cut method data_names() { confess("NotImplemented") } =head2 output_names An array ref of names for the outputs of this module. =cut method output_names() { confess("NotImplemented") } ################################################################################ # Input/Output information ################################################################################ =head2 data_shapes An array ref of AI::MXNet::DataDesc objects specifying the data inputs to this module. =cut method data_shapes() { confess("NotImplemented") } =head2 label_shapes A array ref of AI::MXNet::DataDesc objects specifying the label inputs to this module. If this module does not accept labels -- either it is a module without a loss function, or it is not binded for training, then this should return an empty array ref. =cut method label_shapes() { confess("NotImplemented") } =head2 output_shapes An array ref of (name, shape) array refs specifying the outputs of this module. =cut method output_shapes() { confess("NotImplemented") } ################################################################################ # Parameters of a module ################################################################################ =head2 get_params The parameters, these are potentially a copies of the the actual parameters used to do computation on the device. Returns ------- ($arg_params, $aux_params), a pair of hash refs of name to value mapping. =cut method get_params() { confess("NotImplemented") } =head2 init_params Initialize the parameters and auxiliary states. Parameters ---------- :$initializer : Maybe[AI::MXNet::Initializer] Called to initialize parameters if needed. :$arg_params= : Maybe[HashRef[AI::MXNet::NDArray]] If not undef, should be a hash ref of existing arg_params. :$aux_params : Maybe[HashRef[AI::MXNet::NDArray]] If not undef, should be a hash ref of existing aux_params. :$allow_missing=0 : Bool If true, params could contain missing values, and the initializer will be called to fill those missing params. :$force_init=0 : Bool If true, will force re-initialize even if already initialized. :$allow_extra=0 : Boolean, optional Whether allow extra parameters that are not needed by symbol. If this is True, no error will be thrown when arg_params or aux_params contain extra parameters that is not needed by the executor. =cut method init_params( Maybe[AI::MXNet::Initializer] :$initializer=AI::MXNet::Initializer->Uniform(0.01), Maybe[HashRef[AI::MXNet::NDArray]] :$arg_params=, Maybe[HashRef[AI::MXNet::NDArray]] :$aux_params=, Bool :$allow_missing=0, Bool :$force_init=0, Bool :$allow_extra=0 ) { confess("NotImplemented"); } =head2 set_params Assign parameter and aux state values. Parameters ---------- $arg_params= : Maybe[HashRef[AI::MXNet::NDArray]] Hash ref of name to value (NDArray) mapping. $aux_params= : Maybe[HashRef[AI::MXNet::NDArray]] Hash Ref of name to value (`NDArray`) mapping. :$allow_missing=0 : Bool If true, params could contain missing values, and the initializer will be called to fill those missing params. :$force_init=0 : Bool If true, will force re-initialize even if already initialized. :$allow_extra=0 : Bool Whether allow extra parameters that are not needed by symbol. If this is True, no error will be thrown when arg_params or aux_params contain extra parameters that is not needed by the executor. =cut method set_params( Maybe[HashRef[AI::MXNet::NDArray]] $arg_params=, Maybe[HashRef[AI::MXNet::NDArray]] $aux_params=, Bool :$allow_missing=0, Bool :$force_init=0, Bool :$allow_extra=0 ) { $self->init_params( initializer => undef, arg_params => $arg_params, aux_params => $aux_params, allow_missing => $allow_missing, force_init => $force_init, allow_extra => $allow_extra ); } =head2 save_params Save model parameters to file. Parameters ---------- $fname : str Path to output param file. $arg_params= : Maybe[HashRef[AI::MXNet::NDArray]] $aux_params= : Maybe[HashRef[AI::MXNet::NDArray]] =cut method save_params( Str $fname, Maybe[HashRef[AI::MXNet::NDArray]] $arg_params=, Maybe[HashRef[AI::MXNet::NDArray]] $aux_params= ) { ($arg_params, $aux_params) = $self->get_params unless (defined $arg_params and defined $aux_params); my %save_dict; while(my ($k, $v) = each %{ $arg_params }) { $save_dict{"arg:$k"} = $v->as_in_context(AI::MXNet::Context->cpu); } while(my ($k, $v) = each %{ $aux_params }) { $save_dict{"aux:$k"} = $v->as_in_context(AI::MXNet::Context->cpu); } AI::MXNet::NDArray->save($fname, \%save_dict); } =head2 load_params Load model parameters from file. Parameters ---------- $fname : str Path to input param file. =cut method load_params(Str $fname) { my %save_dict = %{ AI::MXNet::NDArray->load($fname) }; my %arg_params; my %aux_params; while(my ($k, $v) = each %save_dict) { my ($arg_type, $name) = split(/:/, $k, 2); if($arg_type eq 'arg') { $arg_params{ $name } = $v; } elsif($arg_type eq 'aux') { $aux_params{ $name } = $v; } else { confess("Invalid param file $fname"); } } $self->set_params(\%arg_params, \%aux_params); } =head2 get_states The states from all devices Parameters ---------- $merge_multi_context=1 : Bool Default is true (1). In the case when data-parallelism is used, the states will be collected from multiple devices. A true value indicate that we should merge the collected results so that they look like from a single executor. Returns ------- If $merge_multi_context is 1, it is like [$out1, $out2]. Otherwise, it is like [[$out1_dev1, $out1_dev2], [$out2_dev1, $out2_dev2]]. All the output elements are AI::MXNet::NDArray. =cut method get_states(Bool $merge_multi_context=1) { assert($self->binded and $self->params_initialized); assert(not $merge_multi_context); return []; } =head2 set_states Set value for states. You can specify either $states or $value, not both. Parameters ---------- $states= : Maybe[ArrayRef[ArrayRef[AI::MXNet::NDArray]]] source states arrays formatted like [[$state1_dev1, $state1_dev2], [$state2_dev1, $state2_dev2]]. $value= : Maybe[Num] a single scalar value for all state arrays. =cut method set_states(Maybe[ArrayRef[ArrayRef[AI::MXNet::NDArray]]] $states=, Maybe[Num] $value=) { assert($self->binded and $self->params_initialized); assert(not $states and not $value); } =head2 install_monitor Install monitor on all executors Parameters ---------- $mon : AI::MXNet::Monitor =cut method install_monitor(AI::MXNet::Monitor $mon) { confess("NotImplemented") } =head2 prepare Prepare the module for processing a data batch. Usually involves switching a bucket and reshaping. Parameters ---------- $data_batch : AI::MXNet::DataBatch =cut method prepare(AI::MXNet::DataBatch $data_batch){} ################################################################################ # Computations ################################################################################ =head2 forward Forward computation. It supports data batches with different shapes, such as different batch sizes or different image sizes. If reshaping of data batch relates to modification of symbol or module, such as changing image layout ordering or switching from training to predicting, module rebinding is required. Parameters ---------- $data_batch : DataBatch Could be anything with similar API implemented. :$is_train= : Bool Default is undef, which means is_train takes the value of $self->for_training. =cut method forward(AI::MXNet::DataBatch $data_batch, Bool :$is_train=) { confess("NotImplemented") } =head2 backward Backward computation. Parameters ---------- $out_grads : Maybe[AI::MXNet::NDArray|ArrayRef[AI::MXNet::NDArray]], optional Gradient on the outputs to be propagated back. This parameter is only needed when bind is called on outputs that are not a loss function. =cut method backward(Maybe[AI::MXNet::NDArray|ArrayRef[AI::MXNet::NDArray]] $out_grads=) { confess("NotImplemented") } =head2 get_outputs The outputs of the previous forward computation. Parameters ---------- $merge_multi_context=1 : Bool =cut method get_outputs(Bool $merge_multi_context=1) { confess("NotImplemented") } =head2 get_input_grads The gradients to the inputs, computed in the previous backward computation. Parameters ---------- $merge_multi_context=1 : Bool =cut method get_input_grads(Bool $merge_multi_context=1) { confess("NotImplemented") } =head2 update Update parameters according to the installed optimizer and the gradients computed in the previous forward-backward batch. =cut method update() { confess("NotImplemented") } =head2 update_metric Evaluate and accumulate evaluation metric on outputs of the last forward computation. Parameters ---------- $eval_metric : EvalMetric $labels : ArrayRef[AI::MXNet::NDArray] Typically $data_batch->label. =cut method update_metric(EvalMetric $eval_metric, ArrayRef[AI::MXNet::NDArray] $labels) { confess("NotImplemented") } ################################################################################ # module setup ################################################################################ =head2 bind Binds the symbols in order to construct the executors. This is necessary before the computations can be performed. Parameters ---------- $data_shapes : ArrayRef[AI::MXNet::DataDesc] Typically is $data_iter->provide_data. :$label_shapes= : Maybe[ArrayRef[AI::MXNet::DataDesc]] Typically is $data_iter->provide_label. :$for_training=1 : Bool Default is 1. Whether the executors should be bind for training. :$inputs_need_grad=0 : Bool Default is 0. Whether the gradients to the input data need to be computed. Typically this is not needed. But this might be needed when implementing composition of modules. :$force_rebind=0 : Bool Default is 0. This function does nothing if the executors are already binded. But with this as 1, the executors will be forced to rebind. :$shared_module= : A subclass of AI::MXNet::Module::Base Default is undef. This is used in bucketing. When not undef, the shared module essentially corresponds to a different bucket -- a module with different symbol but with the same sets of parameters (e.g. unrolled RNNs with different lengths). :$grad_req='write' : Str|ArrayRef[Str]|HashRef[Str] Requirement for gradient accumulation. Can be 'write', 'add', or 'null' (defaults to 'write'). Can be specified globally (str) or for each argument (array ref, hash ref). =cut method bind( ArrayRef[AI::MXNet::DataDesc] $data_shapes, Maybe[ArrayRef[AI::MXNet::DataDesc]] :$label_shapes=, Bool :$for_training=1, Bool :$inputs_need_grad=0, Bool :$force_rebind=0, Maybe[AI::MXNet::BaseModule] :$shared_module=, Str|ArrayRef[Str]|HashRef[Str] :$grad_req='write' ) { confess("NotImplemented") } =head2 init_optimizer Install and initialize optimizers. Parameters ---------- :$kvstore='local' : str or KVStore :$optimizer='sgd' : str or Optimizer :$optimizer_params={ learning_rate => 0.01 } : hash ref :$force_init=0 : Bool =cut method init_optimizer( Str :$kvstore='local', Optimizer :$optimizer='sgd', HashRef :$optimizer_params={ learning_rate => 0.01 }, Bool :$force_init=0 ) { confess("NotImplemented") } ################################################################################ # misc ################################################################################ =head2 symbol The symbol associated with this module. Except for AI::MXNet::Module, for other types of modules (e.g. AI::MXNet::Module::Bucketing), this property might not be a constant throughout its life time. Some modules might not even be associated with any symbols. =cut method symbol() { return $self->_symbol; } 1;