in hw/mcu/nxp/src/ext/nxp-kinetis-sdk/drivers/fsl_dspi_edma.c [137:938]
status_t DSPI_MasterTransferEDMA(SPI_Type *base, dspi_master_edma_handle_t *handle, dspi_transfer_t *transfer)
{
assert(NULL != handle);
assert(NULL != transfer);
/* If the transfer count is zero, then return immediately.*/
if (transfer->dataSize == 0U)
{
return kStatus_InvalidArgument;
}
/* If both send buffer and receive buffer is null */
if ((NULL == (transfer->txData)) && (NULL == (transfer->rxData)))
{
return kStatus_InvalidArgument;
}
/* Check that we're not busy.*/
if (handle->state == (uint8_t)kDSPI_Busy)
{
return kStatus_DSPI_Busy;
}
handle->state = (uint8_t)kDSPI_Busy;
uint32_t instance = DSPI_GetInstance(base);
uint16_t wordToSend = 0;
uint8_t dummyData = DSPI_GetDummyDataInstance(base);
uint8_t dataAlreadyFed = 0;
uint8_t dataFedMax = 2;
uint32_t tmpMCR = 0;
size_t tmpRemainingSendByteCount = 0;
uint32_t rxAddr = DSPI_GetRxRegisterAddress(base);
uint32_t txAddr = DSPI_MasterGetTxRegisterAddress(base);
edma_tcd_t *softwareTCD = (edma_tcd_t *)((uint32_t)(&handle->dspiSoftwareTCD[1]) & (~0x1FU));
edma_transfer_config_t transferConfigA;
edma_transfer_config_t transferConfigB;
handle->txBuffIfNull = ((uint32_t)dummyData << 8U) | dummyData;
dspi_command_data_config_t commandStruct;
DSPI_StopTransfer(base);
DSPI_FlushFifo(base, true, true);
DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_AllStatusFlag);
commandStruct.whichPcs =
(uint8_t)((uint32_t)1U << ((transfer->configFlags & DSPI_MASTER_PCS_MASK) >> DSPI_MASTER_PCS_SHIFT));
commandStruct.isEndOfQueue = false;
commandStruct.clearTransferCount = false;
commandStruct.whichCtar = (uint8_t)((transfer->configFlags & DSPI_MASTER_CTAR_MASK) >> DSPI_MASTER_CTAR_SHIFT);
commandStruct.isPcsContinuous =
(0U != (transfer->configFlags & (uint32_t)kDSPI_MasterPcsContinuous)) ? true : false;
handle->command = DSPI_MasterGetFormattedCommand(&(commandStruct));
commandStruct.isEndOfQueue = true;
commandStruct.isPcsContinuous =
(0U != (transfer->configFlags & (uint32_t)kDSPI_MasterActiveAfterTransfer)) ? true : false;
handle->lastCommand = DSPI_MasterGetFormattedCommand(&(commandStruct));
handle->bitsPerFrame = ((base->CTAR[commandStruct.whichCtar] & SPI_CTAR_FMSZ_MASK) >> SPI_CTAR_FMSZ_SHIFT) + 1U;
tmpMCR = base->MCR;
if ((0U != (tmpMCR & SPI_MCR_DIS_RXF_MASK)) || (0U != (tmpMCR & SPI_MCR_DIS_TXF_MASK)))
{
handle->fifoSize = 1U;
}
else
{
handle->fifoSize = (uint8_t)FSL_FEATURE_DSPI_FIFO_SIZEn(base);
}
handle->txData = transfer->txData;
handle->rxData = transfer->rxData;
handle->remainingSendByteCount = transfer->dataSize;
handle->remainingReceiveByteCount = transfer->dataSize;
handle->totalByteCount = transfer->dataSize;
/* If using a shared RX/TX DMA request, then this limits the amount of data we can transfer
* due to the linked channel. The max bytes is 511 if 8-bit/frame or 1022 if 16-bit/frame
*/
if (transfer->dataSize > DSPI_EDMA_MAX_TRANSFER_SIZE(base, (handle->bitsPerFrame)))
{
handle->state = (uint8_t)kDSPI_Idle;
return kStatus_DSPI_OutOfRange;
}
/*The data size should be even if the bitsPerFrame is greater than 8 (that is 2 bytes per frame in dspi) */
if ((0U != (transfer->dataSize & 0x1U)) && (handle->bitsPerFrame > 8U))
{
handle->state = (uint8_t)kDSPI_Idle;
return kStatus_InvalidArgument;
}
DSPI_DisableDMA(base, (uint32_t)kDSPI_RxDmaEnable | (uint32_t)kDSPI_TxDmaEnable);
EDMA_SetCallback(handle->edmaRxRegToRxDataHandle, EDMA_DspiMasterCallback,
&s_dspiMasterEdmaPrivateHandle[instance]);
/*
(1)For DSPI instances with shared RX/TX DMA requests: Rx DMA request -> channel_A -> channel_B-> channel_C.
channel_A minor link to channel_B , channel_B minor link to channel_C.
Already pushed 1 or 2 data in SPI_PUSHR , then start the DMA tansfer.
channel_A:SPI_POPR to rxData,
channel_B:next txData to handle->command (low 16 bits),
channel_C:handle->command (32 bits) to SPI_PUSHR, and use the scatter/gather to transfer the last data
(handle->lastCommand to SPI_PUSHR).
(2)For DSPI instances with separate RX and TX DMA requests:
Rx DMA request -> channel_A
Tx DMA request -> channel_C -> channel_B .
channel_C major link to channel_B.
So need prepare the first data in "intermediary" before the DMA
transfer and then channel_B is used to prepare the next data to "intermediary"
channel_A:SPI_POPR to rxData,
channel_C: handle->command (32 bits) to SPI_PUSHR,
channel_B: next txData to handle->command (low 16 bits), and use the scatter/gather to prepare the last data
(handle->lastCommand to handle->Command).
*/
/*If dspi has separate dma request , prepare the first data in "intermediary" .
else (dspi has shared dma request) , send first 2 data if there is fifo or send first 1 data if there is no fifo*/
if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
{
/* For DSPI instances with separate RX/TX DMA requests, we'll use the TX DMA request to
* trigger the TX DMA channel and RX DMA request to trigger the RX DMA channel
*/
/*Prepare the firt data*/
if (handle->bitsPerFrame > 8U)
{
/* If it's the last word */
if (handle->remainingSendByteCount <= 2U)
{
if (NULL != handle->txData)
{
wordToSend = *(handle->txData);
++handle->txData; /* increment to next data byte */
wordToSend |= (uint16_t)(*(handle->txData)) << 8U;
}
else
{
wordToSend = (((uint16_t)dummyData << 8U) | (uint16_t)dummyData);
}
handle->lastCommand = (handle->lastCommand & 0xffff0000U) | wordToSend;
handle->command = handle->lastCommand;
}
else /* For all words except the last word , frame > 8bits */
{
if (NULL != handle->txData)
{
wordToSend = *(handle->txData);
++handle->txData; /* increment to next data byte */
wordToSend |= (uint16_t)(*(handle->txData)) << 8U;
++handle->txData; /* increment to next data byte */
}
else
{
wordToSend = (((uint16_t)dummyData << 8U) | (uint16_t)dummyData);
}
handle->command = (handle->command & 0xffff0000U) | wordToSend;
}
}
else /* Optimized for bits/frame less than or equal to one byte. */
{
if (NULL != handle->txData)
{
wordToSend = *(handle->txData);
++handle->txData; /* increment to next data word*/
}
else
{
wordToSend = dummyData;
}
if (handle->remainingSendByteCount == 1U)
{
handle->lastCommand = (handle->lastCommand & 0xffff0000U) | wordToSend;
handle->command = handle->lastCommand;
}
else
{
handle->command = (handle->command & 0xffff0000U) | wordToSend;
}
}
}
else /*dspi has shared dma request*/
{
/* For DSPI instances with shared RX/TX DMA requests, we'll use the RX DMA request to
* trigger ongoing transfers and will link to the TX DMA channel from the RX DMA channel.
*/
/* If bits/frame is greater than one byte */
if (handle->bitsPerFrame > 8U)
{
while ((uint32_t)kDSPI_TxFifoFillRequestFlag ==
(DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_TxFifoFillRequestFlag))
{
if (handle->remainingSendByteCount <= 2U)
{
if (NULL != handle->txData)
{
wordToSend = *(handle->txData);
++handle->txData;
wordToSend |= (uint16_t)(*(handle->txData)) << 8U;
}
else
{
wordToSend = (((uint16_t)dummyData << 8U) | (uint16_t)dummyData);
}
handle->remainingSendByteCount = 0;
base->PUSHR = (handle->lastCommand & 0xffff0000U) | wordToSend;
}
/* For all words except the last word */
else
{
if (NULL != handle->txData)
{
wordToSend = *(handle->txData);
++handle->txData;
wordToSend |= (uint16_t)(*(handle->txData)) << 8U;
++handle->txData;
}
else
{
wordToSend = (((uint16_t)dummyData << 8U) | (uint16_t)dummyData);
}
handle->remainingSendByteCount -= 2U;
base->PUSHR = (handle->command & 0xffff0000U) | wordToSend;
}
/* Try to clear the TFFF; if the TX FIFO is full this will clear */
DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxFifoFillRequestFlag);
dataAlreadyFed += 2U;
/* exit loop if send count is zero, else update local variables for next loop */
if ((handle->remainingSendByteCount == 0U) || (dataAlreadyFed == (dataFedMax * 2U)))
{
break;
}
} /* End of TX FIFO fill while loop */
}
else /* Optimized for bits/frame less than or equal to one byte. */
{
while ((uint32_t)kDSPI_TxFifoFillRequestFlag ==
(DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_TxFifoFillRequestFlag))
{
if (NULL != handle->txData)
{
wordToSend = *(handle->txData);
++handle->txData;
}
else
{
wordToSend = dummyData;
}
if (handle->remainingSendByteCount == 1U)
{
base->PUSHR = (handle->lastCommand & 0xffff0000U) | wordToSend;
}
else
{
base->PUSHR = (handle->command & 0xffff0000U) | wordToSend;
}
/* Try to clear the TFFF; if the TX FIFO is full this will clear */
DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxFifoFillRequestFlag);
--handle->remainingSendByteCount;
dataAlreadyFed++;
/* exit loop if send count is zero, else update local variables for next loop */
if ((handle->remainingSendByteCount == 0U) || (dataAlreadyFed == dataFedMax))
{
break;
}
} /* End of TX FIFO fill while loop */
}
}
/***channel_A *** used for carry the data from Rx_Data_Register(POPR) to User_Receive_Buffer(rxData)*/
EDMA_ResetChannel(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel);
transferConfigA.srcAddr = (uint32_t)rxAddr;
transferConfigA.srcOffset = 0;
if (NULL != handle->rxData)
{
transferConfigA.destAddr = (uint32_t) & (handle->rxData[0]);
transferConfigA.destOffset = 1;
}
else
{
transferConfigA.destAddr = (uint32_t) & (handle->rxBuffIfNull);
transferConfigA.destOffset = 0;
}
transferConfigA.destTransferSize = kEDMA_TransferSize1Bytes;
if (handle->bitsPerFrame <= 8U)
{
transferConfigA.srcTransferSize = kEDMA_TransferSize1Bytes;
transferConfigA.minorLoopBytes = 1;
transferConfigA.majorLoopCounts = handle->remainingReceiveByteCount;
}
else
{
transferConfigA.srcTransferSize = kEDMA_TransferSize2Bytes;
transferConfigA.minorLoopBytes = 2;
transferConfigA.majorLoopCounts = handle->remainingReceiveByteCount / 2U;
}
/* Store the initially configured eDMA minor byte transfer count into the DSPI handle */
handle->nbytes = (uint8_t)(transferConfigA.minorLoopBytes);
EDMA_SetTransferConfig(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
(const edma_transfer_config_t *)(uint32_t)&transferConfigA, NULL);
EDMA_EnableChannelInterrupts(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
(uint32_t)kEDMA_MajorInterruptEnable);
if (handle->remainingSendByteCount == 0U)
{
EDMA_StartTransfer(handle->edmaRxRegToRxDataHandle);
DSPI_EnableDMA(base, (uint32_t)kDSPI_RxDmaEnable);
DSPI_StartTransfer(base);
return kStatus_Success;
}
tmpRemainingSendByteCount = handle->remainingSendByteCount;
/*Calculate the last data : handle->lastCommand*/
if (((tmpRemainingSendByteCount > 0U) && (1U != (uint8_t)FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))) ||
((((tmpRemainingSendByteCount > 1U) && (handle->bitsPerFrame <= 8U)) ||
((tmpRemainingSendByteCount > 2U) && (handle->bitsPerFrame > 8U))) &&
(1U == (uint8_t)FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))))
{
if (NULL != handle->txData)
{
uint32_t bufferIndex = 0;
if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
{
if (handle->bitsPerFrame <= 8U)
{
bufferIndex = handle->remainingSendByteCount - 1U;
}
else
{
bufferIndex = handle->remainingSendByteCount - 2U;
}
}
else
{
bufferIndex = handle->remainingSendByteCount;
}
uint32_t tmpLastCommand = handle->lastCommand;
uint8_t *tmpTxData = handle->txData;
if (handle->bitsPerFrame <= 8U)
{
tmpLastCommand = (tmpLastCommand & 0xffff0000U) | tmpTxData[bufferIndex - 1U];
}
else
{
tmpLastCommand = (tmpLastCommand & 0xffff0000U) | ((uint32_t)tmpTxData[bufferIndex - 1U] << 8U) |
tmpTxData[bufferIndex - 2U];
}
handle->lastCommand = tmpLastCommand;
}
else
{
if (handle->bitsPerFrame <= 8U)
{
wordToSend = dummyData;
}
else
{
wordToSend = (((uint16_t)dummyData << 8U) | (uint16_t)dummyData);
}
handle->lastCommand = (handle->lastCommand & 0xffff0000U) | wordToSend;
}
}
/* The feature of GASKET is that the SPI supports 8-bit or 16-bit writes to the PUSH TX FIFO,
* allowing a single write to the command word followed by multiple writes to the transmit word.
* The TX FIFO will save the last command word written, and convert a 8-bit/16-bit write to the
* transmit word into a 32-bit write that pushes both the command word and transmit word into
* the TX FIFO (PUSH TX FIFO Register In Master Mode)
* So, if this feature is supported, we can use use one channel to carry the receive data from
* receive regsiter to user data buffer, use the other channel to carry the data from user data buffer
* to transmit register,and use the scatter/gather function to prepare the last data.
* That is to say, if GASKET feature is supported, we can use only two channels for tansferring data.
*/
#if defined(FSL_FEATURE_DSPI_HAS_GASKET) && FSL_FEATURE_DSPI_HAS_GASKET
/* For DSPI instances with separate RX and TX DMA requests: use the scatter/gather to prepare the last data
* (handle->lastCommand) to PUSHR register.
*/
EDMA_ResetChannel(handle->edmaIntermediaryToTxRegHandle->base, handle->edmaIntermediaryToTxRegHandle->channel);
if ((1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) ||
((handle->remainingSendByteCount > 0) && (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))))
{
transferConfigB.srcAddr = (uint32_t) & (handle->lastCommand);
transferConfigB.destAddr = (uint32_t)txAddr;
transferConfigB.srcTransferSize = kEDMA_TransferSize4Bytes;
transferConfigB.destTransferSize = kEDMA_TransferSize4Bytes;
transferConfigB.srcOffset = 0;
transferConfigB.destOffset = 0;
transferConfigB.minorLoopBytes = 4;
transferConfigB.majorLoopCounts = 1;
EDMA_TcdReset(softwareTCD);
EDMA_TcdSetTransferConfig(softwareTCD, &transferConfigB, NULL);
}
/*User_Send_Buffer(txData) to PUSHR register. */
if (((handle->remainingSendByteCount > 2U) && (handle->bitsPerFrame <= 8U)) ||
((handle->remainingSendByteCount > 4U) && (handle->bitsPerFrame > 8U)))
{
if (handle->txData)
{
if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
{
/* For DSPI with separate RX and TX DMA requests, one frame data has been carry
* to handle->command, so need to reduce the pointer of txData.
*/
transferConfigB.srcAddr =
(uint32_t)((uint8_t *)(handle->txData) - ((handle->bitsPerFrame <= 8U) ? (1U) : (2U)));
transferConfigB.srcOffset = 1;
}
else
{
/* For DSPI with shared RX and TX DMA requests, one or two frame data have been carry
* to PUSHR register, so no need to change the pointer of txData.
*/
transferConfigB.srcAddr = (uint32_t)((uint8_t *)(handle->txData));
transferConfigB.srcOffset = 1;
}
}
else
{
transferConfigB.srcAddr = (uint32_t)(&handle->txBuffIfNull);
transferConfigB.srcOffset = 0;
}
transferConfigB.destAddr = (uint32_t)txAddr;
transferConfigB.destOffset = 0;
transferConfigB.srcTransferSize = kEDMA_TransferSize1Bytes;
if (handle->bitsPerFrame <= 8U)
{
transferConfigB.destTransferSize = kEDMA_TransferSize1Bytes;
transferConfigB.minorLoopBytes = 1;
transferConfigB.majorLoopCounts = handle->remainingSendByteCount - 1U;
}
else
{
transferConfigB.destTransferSize = kEDMA_TransferSize2Bytes;
transferConfigB.minorLoopBytes = 2;
transferConfigB.majorLoopCounts = (handle->remainingSendByteCount / 2U) - 1U;
}
EDMA_SetTransferConfig(handle->edmaIntermediaryToTxRegHandle->base,
handle->edmaIntermediaryToTxRegHandle->channel, &transferConfigB, softwareTCD);
}
/* If only one word to transmit, only carry the lastcommand. */
else
{
EDMA_SetTransferConfig(handle->edmaIntermediaryToTxRegHandle->base,
handle->edmaIntermediaryToTxRegHandle->channel, &transferConfigB, NULL);
}
/*Start the EDMA channel_A , channel_C. */
EDMA_StartTransfer(handle->edmaRxRegToRxDataHandle);
EDMA_StartTransfer(handle->edmaIntermediaryToTxRegHandle);
/* Set the channel link.
* For DSPI instances with shared TX and RX DMA requests, setup channel minor link, first receive data from the
* receive register, and then carry transmit data to PUSHER register.
* For DSPI instance with separate TX and RX DMA requests, there is no need to set up channel link.
*/
if (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
{
/*Set channel priority*/
uint8_t channelPriorityLow = handle->edmaRxRegToRxDataHandle->channel;
uint8_t channelPriorityHigh = handle->edmaIntermediaryToTxRegHandle->channel;
uint8_t t = 0;
if (channelPriorityLow > channelPriorityHigh)
{
t = channelPriorityLow;
channelPriorityLow = channelPriorityHigh;
channelPriorityHigh = t;
}
edma_channel_Preemption_config_t preemption_config_t;
preemption_config_t.enableChannelPreemption = true;
preemption_config_t.enablePreemptAbility = true;
preemption_config_t.channelPriority = channelPriorityLow;
EDMA_SetChannelPreemptionConfig(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
&preemption_config_t);
preemption_config_t.channelPriority = channelPriorityHigh;
EDMA_SetChannelPreemptionConfig(handle->edmaIntermediaryToTxRegHandle->base,
handle->edmaIntermediaryToTxRegHandle->channel, &preemption_config_t);
/*if there is Rx DMA request , carry the 32bits data (handle->command) to user data first , then link to
channelC to carry the next data to PUSHER register.(txData to PUSHER) */
if (handle->remainingSendByteCount > 0U)
{
EDMA_SetChannelLink(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
kEDMA_MinorLink, handle->edmaIntermediaryToTxRegHandle->channel);
}
}
DSPI_EnableDMA(base, kDSPI_RxDmaEnable | kDSPI_TxDmaEnable);
/* Setup control info to PUSHER register. */
*((uint16_t *)&(base->PUSHR) + 1) = (handle->command >> 16U);
#else
/***channel_B *** used for carry the data from User_Send_Buffer to "intermediary" because the SPIx_PUSHR should
write the 32bits at once time . Then use channel_C to carry the "intermediary" to SPIx_PUSHR. Note that the
SPIx_PUSHR upper 16 bits are the "command" and the low 16bits are data */
EDMA_ResetChannel(handle->edmaTxDataToIntermediaryHandle->base, handle->edmaTxDataToIntermediaryHandle->channel);
/*For DSPI instances with separate RX and TX DMA requests: use the scatter/gather to prepare the last data
* (handle->lastCommand) to handle->Command*/
if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
{
transferConfigB.srcAddr = (uint32_t) & (handle->lastCommand);
transferConfigB.destAddr = (uint32_t) & (handle->command);
transferConfigB.srcTransferSize = kEDMA_TransferSize4Bytes;
transferConfigB.destTransferSize = kEDMA_TransferSize4Bytes;
transferConfigB.srcOffset = 0;
transferConfigB.destOffset = 0;
transferConfigB.minorLoopBytes = 4;
transferConfigB.majorLoopCounts = 1;
EDMA_TcdReset(softwareTCD);
EDMA_TcdSetTransferConfig(softwareTCD, (const edma_transfer_config_t *)(uint32_t)&transferConfigB, NULL);
}
tmpRemainingSendByteCount = handle->remainingSendByteCount;
/*User_Send_Buffer(txData) to intermediary(handle->command)*/
if (((((tmpRemainingSendByteCount > 2U) && (handle->bitsPerFrame <= 8U)) ||
((tmpRemainingSendByteCount > 4U) && (handle->bitsPerFrame > 8U))) &&
(1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))) ||
(1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)))
{
if (NULL != handle->txData)
{
transferConfigB.srcAddr = (uint32_t)(handle->txData);
transferConfigB.srcOffset = 1;
}
else
{
transferConfigB.srcAddr = (uint32_t)(&handle->txBuffIfNull);
transferConfigB.srcOffset = 0;
}
transferConfigB.destAddr = (uint32_t)(&handle->command);
transferConfigB.destOffset = 0;
transferConfigB.srcTransferSize = kEDMA_TransferSize1Bytes;
if (handle->bitsPerFrame <= 8U)
{
transferConfigB.destTransferSize = kEDMA_TransferSize1Bytes;
transferConfigB.minorLoopBytes = 1;
if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
{
transferConfigB.majorLoopCounts = handle->remainingSendByteCount - 2U;
}
else
{
/*Only enable channel_B minorlink to channel_C , so need to add one count due to the last time is
majorlink , the majorlink would not trigger the channel_C*/
transferConfigB.majorLoopCounts = handle->remainingSendByteCount + 1U;
}
}
else
{
transferConfigB.destTransferSize = kEDMA_TransferSize2Bytes;
transferConfigB.minorLoopBytes = 2;
if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
{
transferConfigB.majorLoopCounts = handle->remainingSendByteCount / 2U - 2U;
}
else
{
/*Only enable channel_B minorlink to channel_C , so need to add one count due to the last time is
* majorlink*/
transferConfigB.majorLoopCounts = handle->remainingSendByteCount / 2U + 1U;
}
}
if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
{
EDMA_SetTransferConfig(handle->edmaTxDataToIntermediaryHandle->base,
handle->edmaTxDataToIntermediaryHandle->channel,
(const edma_transfer_config_t *)(uint32_t)&transferConfigB, softwareTCD);
EDMA_EnableAutoStopRequest(handle->edmaIntermediaryToTxRegHandle->base,
handle->edmaIntermediaryToTxRegHandle->channel, false);
}
else
{
EDMA_SetTransferConfig(handle->edmaTxDataToIntermediaryHandle->base,
handle->edmaTxDataToIntermediaryHandle->channel,
(const edma_transfer_config_t *)(uint32_t)&transferConfigB, NULL);
}
}
else
{
EDMA_SetTransferConfig(handle->edmaTxDataToIntermediaryHandle->base,
handle->edmaTxDataToIntermediaryHandle->channel,
(const edma_transfer_config_t *)(uint32_t)&transferConfigB, NULL);
}
/***channel_C ***carry the "intermediary" to SPIx_PUSHR. used the edma Scatter Gather function on channel_C to
handle the last data */
edma_transfer_config_t transferConfigC;
EDMA_ResetChannel(handle->edmaIntermediaryToTxRegHandle->base, handle->edmaIntermediaryToTxRegHandle->channel);
tmpRemainingSendByteCount = handle->remainingSendByteCount;
/*For DSPI instances with shared RX/TX DMA requests: use the scatter/gather to prepare the last data
* (handle->lastCommand) to SPI_PUSHR*/
if (((1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) && (tmpRemainingSendByteCount > 0U)))
{
transferConfigC.srcAddr = (uint32_t) & (handle->lastCommand);
transferConfigC.destAddr = (uint32_t)txAddr;
transferConfigC.srcTransferSize = kEDMA_TransferSize4Bytes;
transferConfigC.destTransferSize = kEDMA_TransferSize4Bytes;
transferConfigC.srcOffset = 0;
transferConfigC.destOffset = 0;
transferConfigC.minorLoopBytes = 4;
transferConfigC.majorLoopCounts = 1;
EDMA_TcdReset(softwareTCD);
EDMA_TcdSetTransferConfig(softwareTCD, (const edma_transfer_config_t *)(uint32_t)&transferConfigC, NULL);
}
tmpRemainingSendByteCount = handle->remainingSendByteCount;
if (((tmpRemainingSendByteCount > 1U) && (handle->bitsPerFrame <= 8U)) ||
((tmpRemainingSendByteCount > 2U) && (handle->bitsPerFrame > 8U)) ||
(1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)))
{
transferConfigC.srcAddr = (uint32_t)(&(handle->command));
transferConfigC.destAddr = (uint32_t)txAddr;
transferConfigC.srcTransferSize = kEDMA_TransferSize4Bytes;
transferConfigC.destTransferSize = kEDMA_TransferSize4Bytes;
transferConfigC.srcOffset = 0;
transferConfigC.destOffset = 0;
transferConfigC.minorLoopBytes = 4;
if (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
{
if (handle->bitsPerFrame <= 8U)
{
transferConfigC.majorLoopCounts = handle->remainingSendByteCount - 1U;
}
else
{
transferConfigC.majorLoopCounts = (handle->remainingSendByteCount / 2U) - 1U;
}
EDMA_SetTransferConfig(handle->edmaIntermediaryToTxRegHandle->base,
handle->edmaIntermediaryToTxRegHandle->channel,
(const edma_transfer_config_t *)(uint32_t)&transferConfigC, softwareTCD);
}
else
{
transferConfigC.majorLoopCounts = 1;
EDMA_SetTransferConfig(handle->edmaIntermediaryToTxRegHandle->base,
handle->edmaIntermediaryToTxRegHandle->channel,
(const edma_transfer_config_t *)(uint32_t)&transferConfigC, NULL);
}
EDMA_EnableAutoStopRequest(handle->edmaIntermediaryToTxRegHandle->base,
handle->edmaIntermediaryToTxRegHandle->channel, false);
}
else
{
EDMA_SetTransferConfig(handle->edmaIntermediaryToTxRegHandle->base,
handle->edmaIntermediaryToTxRegHandle->channel,
(const edma_transfer_config_t *)(uint32_t)&transferConfigC, NULL);
}
/*Start the EDMA channel_A , channel_B , channel_C transfer*/
EDMA_StartTransfer(handle->edmaRxRegToRxDataHandle);
EDMA_StartTransfer(handle->edmaTxDataToIntermediaryHandle);
EDMA_StartTransfer(handle->edmaIntermediaryToTxRegHandle);
/*Set channel priority*/
uint8_t channelPriorityLow = handle->edmaRxRegToRxDataHandle->channel;
uint8_t channelPriorityMid = handle->edmaTxDataToIntermediaryHandle->channel;
uint8_t channelPriorityHigh = handle->edmaIntermediaryToTxRegHandle->channel;
uint8_t t = 0;
if (channelPriorityLow > channelPriorityMid)
{
t = channelPriorityLow;
channelPriorityLow = channelPriorityMid;
channelPriorityMid = t;
}
if (channelPriorityLow > channelPriorityHigh)
{
t = channelPriorityLow;
channelPriorityLow = channelPriorityHigh;
channelPriorityHigh = t;
}
if (channelPriorityMid > channelPriorityHigh)
{
t = channelPriorityMid;
channelPriorityMid = channelPriorityHigh;
channelPriorityHigh = t;
}
edma_channel_Preemption_config_t preemption_config_t;
preemption_config_t.enableChannelPreemption = true;
preemption_config_t.enablePreemptAbility = true;
preemption_config_t.channelPriority = channelPriorityLow;
if (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
{
EDMA_SetChannelPreemptionConfig(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
(const edma_channel_Preemption_config_t *)(uint32_t)&preemption_config_t);
preemption_config_t.channelPriority = channelPriorityMid;
EDMA_SetChannelPreemptionConfig(handle->edmaTxDataToIntermediaryHandle->base,
handle->edmaTxDataToIntermediaryHandle->channel,
(const edma_channel_Preemption_config_t *)(uint32_t)&preemption_config_t);
preemption_config_t.channelPriority = channelPriorityHigh;
EDMA_SetChannelPreemptionConfig(handle->edmaIntermediaryToTxRegHandle->base,
handle->edmaIntermediaryToTxRegHandle->channel,
(const edma_channel_Preemption_config_t *)(uint32_t)&preemption_config_t);
}
else
{
EDMA_SetChannelPreemptionConfig(handle->edmaIntermediaryToTxRegHandle->base,
handle->edmaIntermediaryToTxRegHandle->channel,
(const edma_channel_Preemption_config_t *)(uint32_t)&preemption_config_t);
preemption_config_t.channelPriority = channelPriorityMid;
EDMA_SetChannelPreemptionConfig(handle->edmaTxDataToIntermediaryHandle->base,
handle->edmaTxDataToIntermediaryHandle->channel,
(const edma_channel_Preemption_config_t *)(uint32_t)&preemption_config_t);
preemption_config_t.channelPriority = channelPriorityHigh;
EDMA_SetChannelPreemptionConfig(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
(const edma_channel_Preemption_config_t *)(uint32_t)&preemption_config_t);
}
/*Set the channel link.*/
if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
{
/*if there is Tx DMA request , carry the 32bits data (handle->command) to PUSHR first , then link to channelB
to prepare the next 32bits data (txData to handle->command) */
if (handle->remainingSendByteCount > 1U)
{
EDMA_SetChannelLink(handle->edmaIntermediaryToTxRegHandle->base,
handle->edmaIntermediaryToTxRegHandle->channel, kEDMA_MajorLink,
handle->edmaTxDataToIntermediaryHandle->channel);
}
DSPI_EnableDMA(base, (uint32_t)kDSPI_RxDmaEnable | (uint32_t)kDSPI_TxDmaEnable);
}
else
{
if (handle->remainingSendByteCount > 0U)
{
EDMA_SetChannelLink(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
kEDMA_MinorLink, handle->edmaTxDataToIntermediaryHandle->channel);
EDMA_SetChannelLink(handle->edmaTxDataToIntermediaryHandle->base,
handle->edmaTxDataToIntermediaryHandle->channel, kEDMA_MinorLink,
handle->edmaIntermediaryToTxRegHandle->channel);
}
DSPI_EnableDMA(base, (uint32_t)kDSPI_RxDmaEnable);
}
#endif
DSPI_StartTransfer(base);
return kStatus_Success;
}