opennlp-wsd/src/main/java/opennlp/tools/disambiguator/WSDisambiguatorME.java [138:158]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
          String outcome;

          String[] context = CONTEXT_GENERATOR
            .getContext(sample, ((WSDDefaultParameters) this.params).ngram,
              ((WSDDefaultParameters) this.params).windowSize,
              this.model.getContextEntries());

          double[] outcomeProbs = model.getWSDMaxentModel().eval(context);
          outcome = model.getWSDMaxentModel().getBestOutcome(outcomeProbs);

          if (outcome != null && !outcome.equals("")) {

            return this.getParams().getSenseSource().name() + " " + wordTag
              .split("\\.")[0] + "%" + outcome;

          } else {
            MFS mfs = new MFS();
            return mfs.disambiguate(wordTag);
          }

        } else {
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



opennlp-wsd/src/main/java/opennlp/tools/disambiguator/WSDisambiguatorME.java [164:184]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        String outcome;

        String[] context = CONTEXT_GENERATOR
          .getContext(sample, ((WSDDefaultParameters) this.params).ngram,
            ((WSDDefaultParameters) this.params).windowSize,
            this.model.getContextEntries());

        double[] outcomeProbs = model.getWSDMaxentModel().eval(context);
        outcome = model.getWSDMaxentModel().getBestOutcome(outcomeProbs);

        if (outcome != null && !outcome.equals("")) {

          return this.getParams().getSenseSource().name() + " " + wordTag
            .split("\\.")[0] + "%" + outcome;
        } else {

          MFS mfs = new MFS();
          return mfs.disambiguate(wordTag);
        }
      }
    } else {
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



