void gemm()

in hardware/xilinx/src/vta.cc [236:325]


void gemm(
  insn_T insn_raw,
  uop_T uop_mem[VTA_UOP_BUFF_DEPTH],
  bus_T acc_mem[VTA_ACC_BUFF_DEPTH][ACC_MAT_AXI_RATIO],
  bus_T inp_mem[VTA_INP_BUFF_DEPTH][INP_MAT_AXI_RATIO],
  bus_T wgt_mem[VTA_WGT_BUFF_DEPTH][WGT_MAT_AXI_RATIO],
  bus_T out_mem[VTA_ACC_BUFF_DEPTH][OUT_MAT_AXI_RATIO]) {
#pragma HLS INLINE

  VTAGemInsn insn = *((VTAGemInsn *) &insn_raw);

  // Loop offset
  acc_idx_T dst_offset_out = 0;
  inp_idx_T src_offset_out = 0;
  wgt_idx_T wgt_offset_out = 0;

  // Outer Loop
  EXE_OUT_LOOP: for (int it_out = 0; it_out < insn.iter_out; it_out++) {
    acc_idx_T dst_offset_in = dst_offset_out;
    inp_idx_T src_offset_in = src_offset_out;
    wgt_idx_T wgt_offset_in = wgt_offset_out;

    // Inner Loop
    EXE_IN_LOOP: for (int it_in = 0; it_in < insn.iter_in; it_in++) {

      // Iterate over micro op
      READ_GEMM_UOP: for (int upc = insn.uop_bgn; upc < insn.uop_end; upc++) {
#pragma HLS PIPELINE II = 1
        // Read micro-op fields
        uop_T uop = uop_mem[upc];

        // Decode indices
        acc_idx_T dst_idx =
            uop.range(VTA_UOP_GEM_0_1, VTA_UOP_GEM_0_0) + dst_offset_in;
        inp_idx_T src_idx =
            uop.range(VTA_UOP_GEM_1_1, VTA_UOP_GEM_1_0) + src_offset_in;
        wgt_idx_T wgt_idx =
            uop.range(VTA_UOP_GEM_2_1, VTA_UOP_GEM_2_0) + wgt_offset_in;

        // Read in weight tensor
        wgt_T w_tensor[VTA_BLOCK_OUT][VTA_BLOCK_IN];
        read_tensor<bus_T, wgt_T, wgt_idx_T, VTA_BUS_WIDTH, VTA_WGT_WIDTH, VTA_BLOCK_OUT, VTA_BLOCK_IN>(wgt_idx, wgt_mem, w_tensor);
        // Read in input tensor
        inp_T i_tensor[VTA_BATCH][VTA_BLOCK_IN];
        read_tensor<bus_T, inp_T, inp_idx_T, VTA_BUS_WIDTH, VTA_INP_WIDTH, VTA_BATCH, VTA_BLOCK_IN>(src_idx, inp_mem, i_tensor);
        // Read in accum tensor
        acc_T a_tensor[VTA_BATCH][VTA_BLOCK_OUT];
        read_tensor<bus_T, acc_T, acc_idx_T, VTA_BUS_WIDTH, VTA_ACC_WIDTH, VTA_BATCH, VTA_BLOCK_OUT>(dst_idx, acc_mem, a_tensor);
        // Output tensor
        out_T o_tensor[VTA_BATCH][VTA_BLOCK_OUT];

        // Inner GEMM loop
        for (int b = 0; b < VTA_BATCH; b++) {
          for (int oc = 0; oc < VTA_BLOCK_OUT; oc++) {
            // Initialize the accumulator values
            acc_T accum = a_tensor[b][oc];
            // Dot product sum
            sum_T tmp = 0;
            // Inner matrix multiplication loop (input channel/feature)
            for (int ic = 0; ic < VTA_BLOCK_IN; ic++) {
              wgt_T w_elem = w_tensor[oc][ic];
              inp_T i_elem = i_tensor[b][ic];
              mul_T prod_dsp = i_elem * w_elem;
              tmp += (sum_T) prod_dsp;
            }
            // Update summation
            accum += (acc_T) tmp;
            // Write back result acc_mem
            a_tensor[b][oc] = insn.reset_reg ? (acc_T) 0 : accum;
            // And output vector
            o_tensor[b][oc] = (out_T) accum.range(VTA_OUT_WIDTH - 1, 0);
          }
        }

        // Write the results back into accumulator
        write_tensor<bus_T, acc_T, acc_idx_T, VTA_BUS_WIDTH, VTA_ACC_WIDTH, VTA_BATCH, VTA_BLOCK_OUT>(dst_idx, a_tensor, acc_mem);
        // Write the results back in the output buffer
        write_tensor<bus_T, out_T, acc_idx_T, VTA_BUS_WIDTH, VTA_OUT_WIDTH, VTA_BATCH, VTA_BLOCK_OUT>(dst_idx, o_tensor, out_mem);
      }
      // Update offsets
      dst_offset_in += insn.dst_factor_in;
      src_offset_in += insn.src_factor_in;
      wgt_offset_in += insn.wgt_factor_in;
    }
    // Update offsets
    dst_offset_out += insn.dst_factor_out;
    src_offset_out += insn.src_factor_out;
    wgt_offset_out += insn.wgt_factor_out;
  }
}