in src/smclarify/util/__init__.py [0:0]
def collapse_to_binary(values, pivot=0.0):
# Collapsing to binary categorical and continuous attributes
# values = attribute values (e.g. labels or sensitive attribute)
# pivot = if single float number -> continuous case;
# otherwise categorical case with pivot as list of positive categories
if np.isscalar(pivot): # continuous case: 0 if the attribute is < pivot value, otherwise 1
nvalues = [1 if el >= pivot else 0 for el in values]
else: # categorical case
nvalues = [1 if el in pivot else 0 for el in values]
return np.array(nvalues)