in miscellaneous/distributed_tensorflow_mask_rcnn/container-serving/resources/predict.py [0:0]
def get_predictor(cls):
"""load trained model"""
with cls.lock:
# check if model is already loaded
if cls.predictor:
return cls.predictor
# create a mask r-cnn model
mask_rcnn_model = ResNetFPNModel()
try:
model_dir = os.environ["SM_MODEL_DIR"]
except KeyError:
model_dir = "/opt/ml/model"
try:
resnet_arch = os.environ["RESNET_ARCH"]
except KeyError:
resnet_arch = "resnet50"
# file path to previoulsy trained mask r-cnn model
latest_trained_model = ""
model_search_path = os.path.join(model_dir, "model-*.index")
for model_file in glob.glob(model_search_path):
if model_file > latest_trained_model:
latest_trained_model = model_file
trained_model = latest_trained_model[:-6]
print(f"Using model: {trained_model}")
cfg.MODE_FPN = True
cfg.MODE_MASK = True
if resnet_arch == "resnet101":
cfg.BACKBONE.RESNET_NUM_BLOCKS = [3, 4, 23, 3]
else:
cfg.BACKBONE.RESNET_NUM_BLOCKS = [3, 4, 6, 3]
cfg_prefix = "CONFIG__"
for key, value in dict(os.environ).items():
if key.startswith(cfg_prefix):
attr_name = key[len(cfg_prefix) :]
attr_name = attr_name.replace("__", ".")
value = eval(value)
print(f"update config: {attr_name}={value}")
nested_var = cfg
attr_list = attr_name.split(".")
for attr in attr_list[0:-1]:
nested_var = getattr(nested_var, attr)
setattr(nested_var, attr_list[-1], value)
cfg.TEST.RESULT_SCORE_THRESH = cfg.TEST.RESULT_SCORE_THRESH_VIS
cfg.DATA.BASEDIR = "/data"
cfg.DATA.TRAIN = "coco_train2017"
cfg.DATA.VAL = "coco_val2017"
register_coco(cfg.DATA.BASEDIR)
finalize_configs(is_training=False)
# Create an inference model
# PredictConfig takes a model, input tensors and output tensors
input_tensors = mask_rcnn_model.get_inference_tensor_names()[0]
output_tensors = mask_rcnn_model.get_inference_tensor_names()[1]
cls.predictor = OfflinePredictor(
PredictConfig(
model=mask_rcnn_model,
session_init=get_model_loader(trained_model),
input_names=input_tensors,
output_names=output_tensors,
)
)
return cls.predictor