def binary_mask_to_rle()

in miscellaneous/distributed_tensorflow_mask_rcnn/container-serving-optimized/resources/predict.py [0:0]


    def binary_mask_to_rle(cls, binary_mask):
        rle = {"counts": [], "size": list(binary_mask.shape)}
        counts = rle.get("counts")
        for i, (value, elements) in enumerate(groupby(binary_mask.ravel(order="C"))):
            if i == 0 and value == 1:
                counts.append(0)
            counts.append(len(list(elements)))
        return rle