in miscellaneous/distributed_tensorflow_mask_rcnn/container-serving-optimized/resources/predict.py [0:0]
def binary_mask_to_rle(cls, binary_mask):
rle = {"counts": [], "size": list(binary_mask.shape)}
counts = rle.get("counts")
for i, (value, elements) in enumerate(groupby(binary_mask.ravel(order="C"))):
if i == 0 and value == 1:
counts.append(0)
counts.append(len(list(elements)))
return rle