def main()

in build_and_train_models/sm-distributed_data_parallelism_pytorch/code/train_pytorch_smdataparallel_mnist.py [0:0]


def main():
    global writer
    # Training settings
    parser = argparse.ArgumentParser(description="PyTorch MNIST Example")
    parser.add_argument(
        "--batch-size",
        type=int,
        default=64,
        metavar="N",
        help="input batch size for training (default: 64)",
    )
    parser.add_argument(
        "--test-batch-size",
        type=int,
        default=1000,
        metavar="N",
        help="input batch size for testing (default: 1000)",
    )
    parser.add_argument(
        "--epochs",
        type=int,
        default=14,
        metavar="N",
        help="number of epochs to train (default: 14)",
    )
    parser.add_argument(
        "--lr", type=float, default=1.0, metavar="LR", help="learning rate (default: 1.0)"
    )
    parser.add_argument(
        "--gamma",
        type=float,
        default=0.7,
        metavar="M",
        help="Learning rate step gamma (default: 0.7)",
    )
    parser.add_argument("--seed", type=int, default=1, metavar="S", help="random seed (default: 1)")
    parser.add_argument(
        "--log-interval",
        type=int,
        default=10,
        metavar="N",
        help="how many batches to wait before logging training status",
    )
    parser.add_argument(
        "--save-model", action="store_true", default=False, help="For Saving the current Model"
    )
    parser.add_argument(
        "--verbose",
        action="store_true",
        default=False,
        help="For displaying smdistributed.dataparallel-specific logs",
    )
    parser.add_argument(
        "--data-path",
        type=str,
        default="/tmp/data",
        help="Path for downloading " "the MNIST dataset",
    )

    dist.init_process_group(backend="smddp")
    args = parser.parse_args()
    args.world_size = dist.get_world_size()
    args.rank = rank = dist.get_rank()
    args.local_rank = local_rank = int(os.getenv("LOCAL_RANK", -1))
    args.lr = 1.0
    args.batch_size //= args.world_size // 8
    args.batch_size = max(args.batch_size, 1)
    data_path = args.data_path

    if args.verbose:
        print(
            "Hello from rank",
            rank,
            "of local_rank",
            local_rank,
            "in world size of",
            args.world_size,
        )

    if not torch.cuda.is_available():
        raise CUDANotFoundException(
            "Must run smdistributed.dataparallel MNIST example on CUDA-capable devices."
        )

    torch.manual_seed(args.seed)

    device = torch.device("cuda")

    # select a single rank per node to download data
    is_first_local_rank = local_rank == 0
            
    if is_first_local_rank:
        train_dataset = datasets.MNIST(
            data_path,
            train=True,
            download=True,
            transform=transforms.Compose(
                [transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
            ),
        )
        
    dist.barrier()  # prevent other ranks from accessing the data early
    if not is_first_local_rank:
        train_dataset = datasets.MNIST(
            data_path,
            train=True,
            download=False,
            transform=transforms.Compose(
                [transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
            ),
        )

    train_sampler = torch.utils.data.distributed.DistributedSampler(
        train_dataset, num_replicas=args.world_size, rank=rank
    )
    train_loader = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=args.batch_size,
        shuffle=False,
        num_workers=0,
        pin_memory=True,
        sampler=train_sampler,
    )
    if rank == 0:
        test_loader = torch.utils.data.DataLoader(
            datasets.MNIST(
                data_path,
                train=False,
                transform=transforms.Compose(
                    [transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
                ),
            ),
            batch_size=args.test_batch_size,
            shuffle=True,
        )

    model = DDP(Net().to(device))
    torch.cuda.set_device(local_rank)
    model.cuda(local_rank)
    optimizer = optim.Adadelta(model.parameters(), lr=args.lr)
    scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)
    # Create SummaryWriter only for the first rank of the first node
    writer = SummaryWriter('/opt/ml/output/tensorboard') if rank == 0 and local_rank == 0 else None
    for epoch in range(1, args.epochs + 1):
        train(args, model, device, train_loader, optimizer, epoch)
        if rank == 0:
            test(model, device, test_loader)
        scheduler.step()
        
    if writer:
        writer.close()

    if args.save_model:
        torch.save(model.state_dict(), "mnist_cnn.pt")