in archived/Image_Classification_VIT/scripts/train_images.py [0:0]
def parse_args():
parser = argparse.ArgumentParser(description="Fine-tune a Transformers model on an image classification dataset")
##################### SIFTING FLAG #############################
parser.add_argument(
"--use_sifting",
type=int,
default=None,
help="Flag for whether to use sifting or not. 0 serves as false",
)
#################################################################
parser.add_argument(
"--dataset_name",
type=str,
default="cifar10",
help=(
"The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
" dataset)."
),
)
parser.add_argument("--train_dir", type=str, default=os.environ["SM_CHANNEL_TRAIN"], help="A folder containing the training data.")
parser.add_argument("--validation_dir", type=str, default=None, help="A folder containing the validation data.")
parser.add_argument(
"--max_train_samples",
type=int,
default=None,
help=(
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
),
)
parser.add_argument(
"--max_eval_samples",
type=int,
default=None,
help=(
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
),
)
parser.add_argument(
"--train_val_split",
type=float,
default=0.15,
help="Percent to split off of train for validation",
)
parser.add_argument(
"--model_name_or_path",
type=str,
help="Path to pretrained model or model identifier from huggingface.co/models.",
default="google/vit-base-patch16-224-in21k",
)
parser.add_argument(
"--per_device_train_batch_size",
type=int,
default=8,
help="Batch size (per device) for the training dataloader.",
)
parser.add_argument(
"--per_device_eval_batch_size",
type=int,
default=8,
help="Batch size (per device) for the evaluation dataloader.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=5e-5,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.")
parser.add_argument("--num_train_epochs", type=int, default=3, help="Total number of training epochs to perform.")
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--lr_scheduler_type",
type=SchedulerType,
default="linear",
help="The scheduler type to use.",
choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"],
)
parser.add_argument(
"--num_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.")
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument(
"--checkpointing_steps",
type=str,
default=None,
help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.",
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help="If the training should continue from a checkpoint folder.",
)
parser.add_argument(
"--ignore_mismatched_sizes",
action="store_false",
help="Whether or not to enable to load a pretrained model whose head dimensions are different.",
)
args = parser.parse_args()
# Sanity checks
if args.dataset_name is None and args.train_dir is None and args.validation_dir is None:
raise ValueError("Need either a dataset name or a training/validation folder.")
return args