def main()

in archived/sagemaker-debugger/pytorch_model_debugging/scripts/pytorch_mnist.py [0:0]


def main():
    # Training settings
    parser = argparse.ArgumentParser(description="PyTorch MNIST Example")
    parser.add_argument(
        "--batch-size",
        type=int,
        default=64,
        metavar="N",
        help="input batch size for training (default: 64)",
    )
    parser.add_argument(
        "--test-batch-size",
        type=int,
        default=1000,
        metavar="N",
        help="input batch size for testing (default: 1000)",
    )
    parser.add_argument(
        "--epochs",
        type=int,
        default=14,
        metavar="N",
        help="number of epochs to train (default: 14)",
    )
    parser.add_argument(
        "--lr", type=float, default=1.0, metavar="LR", help="learning rate (default: 1.0)"
    )
    parser.add_argument(
        "--gamma",
        type=float,
        default=0.7,
        metavar="M",
        help="Learning rate step gamma (default: 0.7)",
    )
    parser.add_argument(
        "--no-cuda", action="store_true", default=False, help="disables CUDA training"
    )
    parser.add_argument("--num_workers", type=int, default=1, help="number of workers (GPUs)")
    parser.add_argument(
        "--dry-run", action="store_true", default=False, help="quickly check a single pass"
    )
    parser.add_argument("--seed", type=int, default=1, metavar="S", help="random seed (default: 1)")
    parser.add_argument(
        "--log-interval",
        type=int,
        default=10,
        metavar="N",
        help="how many batches to wait before logging training status",
    )
    parser.add_argument(
        "--save-model", action="store_true", default=False, help="For Saving the current Model"
    )
    parser.add_argument(
        "--region", type=str, help="aws region"
    )
    args = parser.parse_args()
    use_cuda = not args.no_cuda and torch.cuda.is_available()

    torch.manual_seed(args.seed)

    device = torch.device("cuda" if use_cuda else "cpu")

    train_kwargs = {"batch_size": args.batch_size}
    test_kwargs = {"batch_size": args.test_batch_size}
    if use_cuda:
        cuda_kwargs = {"num_workers": args.num_workers, "pin_memory": True, "shuffle": True}
        train_kwargs.update(cuda_kwargs)
        test_kwargs.update(cuda_kwargs)
    
    # =======================================#
    # 3. Set data source for MNIST dataset. #
    # =======================================#

    TORCHVISION_VERSION = "0.9.1"
    if Version(torchvision.__version__) < Version(TORCHVISION_VERSION):
        # Set path to data source and include checksum to make sure data isn't corrupted
        datasets.MNIST.resources = [
            (
                f"https://sagemaker-example-files-prod-{args.region}.s3.amazonaws.com/datasets/image/MNIST/train-images-idx3-ubyte.gz",
                "f68b3c2dcbeaaa9fbdd348bbdeb94873",
            ),
            (
                f"https://sagemaker-example-files-prod-{args.region}.s3.amazonaws.com/datasets/image/MNIST/train-labels-idx1-ubyte.gz",
                "d53e105ee54ea40749a09fcbcd1e9432",
            ),
            (
                f"https://sagemaker-example-files-prod-{args.region}.s3.amazonaws.com/datasets/image/MNIST/t10k-images-idx3-ubyte.gz",
                "9fb629c4189551a2d022fa330f9573f3",
            ),
            (
                f"https://sagemaker-example-files-prod-{args.region}.s3.amazonaws.com/datasets/image/MNIST/t10k-labels-idx1-ubyte.gz",
                "ec29112dd5afa0611ce80d1b7f02629c",
            ),
        ]
    else:
        # Set path to data source
        datasets.MNIST.mirrors = ["https://sagemaker-sample-files.s3.amazonaws.com/datasets/image/MNIST/"]

    transform = transforms.Compose(
        [transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
    )
    dataset1 = datasets.MNIST("../data", train=True, download=True, transform=transform)
    dataset2 = datasets.MNIST("../data", train=False, transform=transform)
    train_loader = torch.utils.data.DataLoader(dataset1, **train_kwargs)
    test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs)

    model = Net().to(device)
    loss_fn = nn.NLLLoss()

    # ======================================================#
    # 4. Register the SMDebug hook to save output tensors. #
    # ======================================================#
    hook = smd.Hook.create_from_json_file()
    hook.register_hook(model)
    hook.register_loss(loss_fn)

    optimizer = optim.Adadelta(model.parameters(), lr=args.lr)

    scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)
    for epoch in range(1, args.epochs + 1):
        # ===========================================================#
        # 5. Pass the SMDebug hook to the train and test functions. #
        # ===========================================================#
        train(args, model, loss_fn, device, train_loader, optimizer, epoch, hook)
        test(model, loss_fn, device, test_loader, hook)
        scheduler.step()

    if args.save_model:
        torch.save(model.state_dict(), "mnist_cnn.pt")