in archived/sagemaker-debugger/pytorch_model_debugging/scripts/pytorch_mnist.py [0:0]
def main():
# Training settings
parser = argparse.ArgumentParser(description="PyTorch MNIST Example")
parser.add_argument(
"--batch-size",
type=int,
default=64,
metavar="N",
help="input batch size for training (default: 64)",
)
parser.add_argument(
"--test-batch-size",
type=int,
default=1000,
metavar="N",
help="input batch size for testing (default: 1000)",
)
parser.add_argument(
"--epochs",
type=int,
default=14,
metavar="N",
help="number of epochs to train (default: 14)",
)
parser.add_argument(
"--lr", type=float, default=1.0, metavar="LR", help="learning rate (default: 1.0)"
)
parser.add_argument(
"--gamma",
type=float,
default=0.7,
metavar="M",
help="Learning rate step gamma (default: 0.7)",
)
parser.add_argument(
"--no-cuda", action="store_true", default=False, help="disables CUDA training"
)
parser.add_argument("--num_workers", type=int, default=1, help="number of workers (GPUs)")
parser.add_argument(
"--dry-run", action="store_true", default=False, help="quickly check a single pass"
)
parser.add_argument("--seed", type=int, default=1, metavar="S", help="random seed (default: 1)")
parser.add_argument(
"--log-interval",
type=int,
default=10,
metavar="N",
help="how many batches to wait before logging training status",
)
parser.add_argument(
"--save-model", action="store_true", default=False, help="For Saving the current Model"
)
parser.add_argument(
"--region", type=str, help="aws region"
)
args = parser.parse_args()
use_cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
device = torch.device("cuda" if use_cuda else "cpu")
train_kwargs = {"batch_size": args.batch_size}
test_kwargs = {"batch_size": args.test_batch_size}
if use_cuda:
cuda_kwargs = {"num_workers": args.num_workers, "pin_memory": True, "shuffle": True}
train_kwargs.update(cuda_kwargs)
test_kwargs.update(cuda_kwargs)
# =======================================#
# 3. Set data source for MNIST dataset. #
# =======================================#
TORCHVISION_VERSION = "0.9.1"
if Version(torchvision.__version__) < Version(TORCHVISION_VERSION):
# Set path to data source and include checksum to make sure data isn't corrupted
datasets.MNIST.resources = [
(
f"https://sagemaker-example-files-prod-{args.region}.s3.amazonaws.com/datasets/image/MNIST/train-images-idx3-ubyte.gz",
"f68b3c2dcbeaaa9fbdd348bbdeb94873",
),
(
f"https://sagemaker-example-files-prod-{args.region}.s3.amazonaws.com/datasets/image/MNIST/train-labels-idx1-ubyte.gz",
"d53e105ee54ea40749a09fcbcd1e9432",
),
(
f"https://sagemaker-example-files-prod-{args.region}.s3.amazonaws.com/datasets/image/MNIST/t10k-images-idx3-ubyte.gz",
"9fb629c4189551a2d022fa330f9573f3",
),
(
f"https://sagemaker-example-files-prod-{args.region}.s3.amazonaws.com/datasets/image/MNIST/t10k-labels-idx1-ubyte.gz",
"ec29112dd5afa0611ce80d1b7f02629c",
),
]
else:
# Set path to data source
datasets.MNIST.mirrors = ["https://sagemaker-sample-files.s3.amazonaws.com/datasets/image/MNIST/"]
transform = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
)
dataset1 = datasets.MNIST("../data", train=True, download=True, transform=transform)
dataset2 = datasets.MNIST("../data", train=False, transform=transform)
train_loader = torch.utils.data.DataLoader(dataset1, **train_kwargs)
test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs)
model = Net().to(device)
loss_fn = nn.NLLLoss()
# ======================================================#
# 4. Register the SMDebug hook to save output tensors. #
# ======================================================#
hook = smd.Hook.create_from_json_file()
hook.register_hook(model)
hook.register_loss(loss_fn)
optimizer = optim.Adadelta(model.parameters(), lr=args.lr)
scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)
for epoch in range(1, args.epochs + 1):
# ===========================================================#
# 5. Pass the SMDebug hook to the train and test functions. #
# ===========================================================#
train(args, model, loss_fn, device, train_loader, optimizer, epoch, hook)
test(model, loss_fn, device, test_loader, hook)
scheduler.step()
if args.save_model:
torch.save(model.state_dict(), "mnist_cnn.pt")