tools/cloud/iot-topic-to-html.py (77 lines of code) (raw):

#!/usr/bin/env python3 # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 import argparse import json import pandas as pd import plotly.graph_objects as go def is_included(name, include_list, exclude_list): if include_list: for include in include_list: if include and include in name: break else: return False for exclude in exclude_list: if exclude and exclude in name: return False return True if __name__ == "__main__": parser = argparse.ArgumentParser(description="Creates plots for collected IoT topic data") parser.add_argument( "--vehicle-name", required=True, help="Vehicle name", ) parser.add_argument( "--files", type=argparse.FileType("r"), nargs="+", required=True, help="List files to process", ) parser.add_argument( "--html-filename", metavar="FILE", required=True, help="HTML output filename", ) parser.add_argument( "--include-signals", metavar="SIGNAL_LIST", help="Comma separated list of signals to include", ) parser.add_argument( "--exclude-signals", metavar="SIGNAL_LIST", help="Comma separated list of signals to exclude", ) args = parser.parse_args() df = pd.DataFrame() include_list = ( [i.strip() for i in args.include_signals.split(",")] if args.include_signals else [] ) exclude_list = ( [i.strip() for i in args.exclude_signals.split(",")] if args.exclude_signals else [] ) for file in args.files: try: with open(file.name) as fp: data = json.load(fp) for row in data: if row["vehicleName"] != args.vehicle_name: continue for measure_name, measure_value in row["signals"].items(): if not is_included(measure_name, include_list, exclude_list): continue for signal in measure_value: timestamp = signal["time"] df.at[timestamp, measure_name] = signal["value"] except Exception as e: raise Exception(str(e) + f" in {file.name}") if df.empty: raise Exception("No data found") df["time"] = pd.to_datetime(df.index, unit="ms") fig = go.Figure() for column in df: if column != "time": fig.add_trace(go.Scatter(x=df["time"], y=df[column], mode="markers", name=column)) with open(args.html_filename, "w") as fp: fp.write(fig.to_html())