tools/cloud/iot-topic-to-html.py (77 lines of code) (raw):
#!/usr/bin/env python3
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
# SPDX-License-Identifier: Apache-2.0
import argparse
import json
import pandas as pd
import plotly.graph_objects as go
def is_included(name, include_list, exclude_list):
if include_list:
for include in include_list:
if include and include in name:
break
else:
return False
for exclude in exclude_list:
if exclude and exclude in name:
return False
return True
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Creates plots for collected IoT topic data")
parser.add_argument(
"--vehicle-name",
required=True,
help="Vehicle name",
)
parser.add_argument(
"--files",
type=argparse.FileType("r"),
nargs="+",
required=True,
help="List files to process",
)
parser.add_argument(
"--html-filename",
metavar="FILE",
required=True,
help="HTML output filename",
)
parser.add_argument(
"--include-signals",
metavar="SIGNAL_LIST",
help="Comma separated list of signals to include",
)
parser.add_argument(
"--exclude-signals",
metavar="SIGNAL_LIST",
help="Comma separated list of signals to exclude",
)
args = parser.parse_args()
df = pd.DataFrame()
include_list = (
[i.strip() for i in args.include_signals.split(",")] if args.include_signals else []
)
exclude_list = (
[i.strip() for i in args.exclude_signals.split(",")] if args.exclude_signals else []
)
for file in args.files:
try:
with open(file.name) as fp:
data = json.load(fp)
for row in data:
if row["vehicleName"] != args.vehicle_name:
continue
for measure_name, measure_value in row["signals"].items():
if not is_included(measure_name, include_list, exclude_list):
continue
for signal in measure_value:
timestamp = signal["time"]
df.at[timestamp, measure_name] = signal["value"]
except Exception as e:
raise Exception(str(e) + f" in {file.name}")
if df.empty:
raise Exception("No data found")
df["time"] = pd.to_datetime(df.index, unit="ms")
fig = go.Figure()
for column in df:
if column != "time":
fig.add_trace(go.Scatter(x=df["time"], y=df[column], mode="markers", name=column))
with open(args.html_filename, "w") as fp:
fp.write(fig.to_html())