int BN_mod_exp_mont_consttime()

in crypto/fipsmodule/bn/exponentiation.c [927:1254]


int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
                              const BIGNUM *m, BN_CTX *ctx,
                              const BN_MONT_CTX *mont) {
  int i, ret = 0, wvalue;
  BN_MONT_CTX *new_mont = NULL;

  unsigned char *powerbuf_free = NULL;
  size_t powerbuf_len = 0;
  BN_ULONG *powerbuf = NULL;

  if (!BN_is_odd(m)) {
    OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS);
    return 0;
  }
  if (m->neg) {
    OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER);
    return 0;
  }
  // |a| is secret, but it is required to be in range, so these comparisons may
  // be leaked.
  if (a->neg || constant_time_declassify_int(BN_ucmp(a, m) >= 0)) {
    OPENSSL_PUT_ERROR(BN, BN_R_INPUT_NOT_REDUCED);
    return 0;
  }

  // Use all bits stored in |p|, rather than |BN_num_bits|, so we do not leak
  // whether the top bits are zero.
  int max_bits = p->width * BN_BITS2;
  int bits = max_bits;
  if (bits == 0) {
    // x**0 mod 1 is still zero.
    if (BN_abs_is_word(m, 1)) {
      BN_zero(rr);
      return 1;
    }
    return BN_one(rr);
  }

  // Allocate a montgomery context if it was not supplied by the caller.
  if (mont == NULL) {
    new_mont = BN_MONT_CTX_new_consttime(m, ctx);
    if (new_mont == NULL) {
      goto err;
    }
    mont = new_mont;
  }

  // Use the width in |mont->N|, rather than the copy in |m|. The assembly
  // implementation assumes it can use |top| to size R.
  int top = mont->N.width;

#if defined(OPENSSL_BN_ASM_MONT5) || defined(RSAZ_ENABLED)
  // Share one large stack-allocated buffer between the RSAZ and non-RSAZ code
  // paths. If we were to use separate static buffers for each then there is
  // some chance that both large buffers would be allocated on the stack,
  // causing the stack space requirement to be truly huge (~10KB).
  alignas(MOD_EXP_CTIME_ALIGN) BN_ULONG storage[MOD_EXP_CTIME_STORAGE_LEN];
#endif
#if defined(RSAZ_ENABLED)
  // If the size of the operands allow it, perform the optimized RSAZ
  // exponentiation. For further information see crypto/fipsmodule/bn/rsaz_exp.c
  // and accompanying assembly modules.
  if (a->width == 16 && p->width == 16 && BN_num_bits(m) == 1024 &&
      rsaz_avx2_preferred()) {
    if (!bn_wexpand(rr, 16)) {
      goto err;
    }
    RSAZ_1024_mod_exp_avx2(rr->d, a->d, p->d, m->d, mont->RR.d, mont->n0[0],
                           storage);
    rr->width = 16;
    rr->neg = 0;
    ret = 1;
    goto err;
  }
#endif

  // Get the window size to use with size of p.
  int window = BN_window_bits_for_ctime_exponent_size;

  // Calculating |powerbuf_len| below cannot overflow because of the bound on
  // Montgomery reduction.
  assert((size_t)top <= BN_MONTGOMERY_MAX_WORDS);
  OPENSSL_STATIC_ASSERT(
      BN_MONTGOMERY_MAX_WORDS <=
          INT_MAX / sizeof(BN_ULONG) / ((1 <<
              BN_window_bits_for_ctime_exponent_size) + 3),
      powerbuf_len_may_overflow);

#if defined(OPENSSL_BN_ASM_MONT5)
  // Reserve space for the |mont->N| copy.
  powerbuf_len += top * sizeof(mont->N.d[0]);
#endif

  // Allocate a buffer large enough to hold all of the pre-computed
  // powers of |am|, |am| itself, and |tmp|.
  int num_powers = 1 << window;
  powerbuf_len += sizeof(m->d[0]) * top * (num_powers + 2);

#if defined(OPENSSL_BN_ASM_MONT5)
  if (powerbuf_len <= sizeof(storage)) {
    powerbuf = storage;
  }
  // |storage| is more than large enough to handle 1024-bit inputs.
  assert(powerbuf != NULL || top * BN_BITS2 > 1024);
#endif
  if (powerbuf == NULL) {
    powerbuf_free = OPENSSL_zalloc(powerbuf_len + MOD_EXP_CTIME_ALIGN);
    if (powerbuf_free == NULL) {
      goto err;
    }
    powerbuf = align_pointer(powerbuf_free, MOD_EXP_CTIME_ALIGN);
  } else {
    OPENSSL_memset(powerbuf, 0, powerbuf_len);
  }

  // Place |tmp| and |am| right after powers table.
  BIGNUM tmp, am;
  tmp.d = powerbuf + top * num_powers;
  am.d = tmp.d + top;
  tmp.width = am.width = 0;
  tmp.dmax = am.dmax = top;
  tmp.neg = am.neg = 0;
  tmp.flags = am.flags = BN_FLG_STATIC_DATA;

  if (!bn_one_to_montgomery(&tmp, mont, ctx) ||
      !bn_resize_words(&tmp, top)) {
    goto err;
  }

  // Prepare a^1 in the Montgomery domain.
  assert(!a->neg);
  declassify_assert(BN_ucmp(a, m) < 0);
  if (!BN_to_montgomery(&am, a, mont, ctx) ||
      !bn_resize_words(&am, top)) {
    goto err;
  }

#if defined(OPENSSL_BN_ASM_MONT5)
  // This optimization uses ideas from https://eprint.iacr.org/2011/239,
  // specifically optimization of cache-timing attack countermeasures,
  // pre-computation optimization, and Almost Montgomery Multiplication.
  //
  // The paper discusses a 4-bit window to optimize 512-bit modular
  // exponentiation, used in RSA-1024 with CRT, but RSA-1024 is no longer
  // important.
  //
  // |bn_mul_mont_gather5| and |bn_power5| implement the "almost" reduction
  // variant, so the values here may not be fully reduced. They are bounded by R
  // (i.e. they fit in |top| words), not |m|. Additionally, we pass these
  // "almost" reduced inputs into |bn_mul_mont|, which implements the normal
  // reduction variant. Given those inputs, |bn_mul_mont| may not give reduced
  // output, but it will still produce "almost" reduced output.
  //
  // TODO(davidben): Using "almost" reduction complicates analysis of this code,
  // and its interaction with other parts of the project. Determine whether this
  // is actually necessary for performance.
  if (top > 1) {
    assert(window == 5);
    // Copy |mont->N| to improve cache locality.
    BN_ULONG *np = am.d + top;
    for (i = 0; i < top; i++) {
      np[i] = mont->N.d[i];
    }

    // Fill |powerbuf| with the first 32 powers of |am|.
    const BN_ULONG *n0 = mont->n0;
    bn_scatter5(tmp.d, top, powerbuf, 0);
    bn_scatter5(am.d, am.width, powerbuf, 1);
    bn_mul_mont(tmp.d, am.d, am.d, np, n0, top);
    bn_scatter5(tmp.d, top, powerbuf, 2);

    // Square to compute powers of two.
    for (i = 4; i < 32; i *= 2) {
      bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
      bn_scatter5(tmp.d, top, powerbuf, i);
    }
    // Compute odd powers |i| based on |i - 1|, then all powers |i * 2^j|.
    for (i = 3; i < 32; i += 2) {
      bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
      bn_scatter5(tmp.d, top, powerbuf, i);
      for (int j = 2 * i; j < 32; j *= 2) {
        bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
        bn_scatter5(tmp.d, top, powerbuf, j);
      }
    }

    bits--;
    for (wvalue = 0, i = bits % 5; i >= 0; i--, bits--) {
      wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
    }
    bn_gather5(tmp.d, top, powerbuf, wvalue);

    // At this point |bits| is 4 mod 5 and at least -1. (|bits| is the first bit
    // that has not been read yet.)
    assert(bits >= -1 && (bits == -1 || bits % 5 == 4));

    // Scan the exponent one window at a time starting from the most
    // significant bits.
    if (top & 7) {
      while (bits >= 0) {
        for (wvalue = 0, i = 0; i < 5; i++, bits--) {
          wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
        }

        bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
        bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
        bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
        bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
        bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
        bn_mul_mont_gather5(tmp.d, tmp.d, powerbuf, np, n0, top, wvalue);
      }
    } else {
      const uint8_t *p_bytes = (const uint8_t *)p->d;
      assert(bits < max_bits);
      // |p = 0| has been handled as a special case, so |max_bits| is at least
      // one word.
      assert(max_bits >= 64);

      // If the first bit to be read lands in the last byte, unroll the first
      // iteration to avoid reading past the bounds of |p->d|. (After the first
      // iteration, we are guaranteed to be past the last byte.) Note |bits|
      // here is the top bit, inclusive.
      if (bits - 4 >= max_bits - 8) {
        // Read five bits from |bits-4| through |bits|, inclusive.
        wvalue = p_bytes[p->width * BN_BYTES - 1];
        wvalue >>= (bits - 4) & 7;
        wvalue &= 0x1f;
        bits -= 5;
        bn_power5(tmp.d, tmp.d, powerbuf, np, n0, top, wvalue);
      }
      while (bits >= 0) {
        // Read five bits from |bits-4| through |bits|, inclusive.
        int first_bit = bits - 4;
        uint16_t val;
        OPENSSL_memcpy(&val, p_bytes + (first_bit >> 3), sizeof(val));
        val >>= first_bit & 7;
        val &= 0x1f;
        bits -= 5;
        bn_power5(tmp.d, tmp.d, powerbuf, np, n0, top, val);
      }
    }
    // The result is now in |tmp| in Montgomery form, but it may not be fully
    // reduced. This is within bounds for |BN_from_montgomery| (tmp < R <= m*R)
    // so it will, when converting from Montgomery form, produce a fully reduced
    // result.
    //
    // This differs from Figure 2 of the paper, which uses AMM(h, 1) to convert
    // from Montgomery form with unreduced output, followed by an extra
    // reduction step. In the paper's terminology, we replace steps 9 and 10
    // with MM(h, 1).
  } else
#endif
  {
    copy_to_prebuf(&tmp, top, powerbuf, 0, window);
    copy_to_prebuf(&am, top, powerbuf, 1, window);

    // If the window size is greater than 1, then calculate
    // val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1)
    // (even powers could instead be computed as (a^(i/2))^2
    // to use the slight performance advantage of sqr over mul).
    if (window > 1) {
      if (!BN_mod_mul_montgomery(&tmp, &am, &am, mont, ctx)) {
        goto err;
      }

      copy_to_prebuf(&tmp, top, powerbuf, 2, window);

      for (i = 3; i < num_powers; i++) {
        // Calculate a^i = a^(i-1) * a
        if (!BN_mod_mul_montgomery(&tmp, &am, &tmp, mont, ctx)) {
          goto err;
        }

        copy_to_prebuf(&tmp, top, powerbuf, i, window);
      }
    }

    bits--;
    for (wvalue = 0, i = bits % window; i >= 0; i--, bits--) {
      wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
    }
    if (!copy_from_prebuf(&tmp, top, powerbuf, wvalue, window)) {
      goto err;
    }

    // Scan the exponent one window at a time starting from the most
    // significant bits.
    while (bits >= 0) {
      wvalue = 0;  // The 'value' of the window

      // Scan the window, squaring the result as we go
      for (i = 0; i < window; i++, bits--) {
        if (!BN_mod_mul_montgomery(&tmp, &tmp, &tmp, mont, ctx)) {
          goto err;
        }
        wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
      }

      // Fetch the appropriate pre-computed value from the pre-buf
      if (!copy_from_prebuf(&am, top, powerbuf, wvalue, window)) {
        goto err;
      }

      // Multiply the result into the intermediate result
      if (!BN_mod_mul_montgomery(&tmp, &tmp, &am, mont, ctx)) {
        goto err;
      }
    }
  }

  // Convert the final result from Montgomery to standard format. If we used the
  // |OPENSSL_BN_ASM_MONT5| codepath, |tmp| may not be fully reduced. It is only
  // bounded by R rather than |m|. However, that is still within bounds for
  // |BN_from_montgomery|, which implements full Montgomery reduction, not
  // "almost" Montgomery reduction.
  if (!BN_from_montgomery(rr, &tmp, mont, ctx)) {
    goto err;
  }
  ret = 1;

err:
  BN_MONT_CTX_free(new_mont);
  if (powerbuf != NULL && powerbuf_free == NULL) {
    OPENSSL_cleanse(powerbuf, powerbuf_len);
  }
  OPENSSL_free(powerbuf_free);
  return ret;
}