in crypto/fipsmodule/rsa/rsa_impl.c [1003:1176]
static int rsa_generate_key_impl(RSA *rsa, int bits, const BIGNUM *e_value,
BN_GENCB *cb) {
// See FIPS 186-4 appendix B.3. This function implements a generalized version
// of the FIPS algorithm. |RSA_generate_key_fips| performs additional checks
// for FIPS-compliant key generation.
// Always generate RSA keys which are a multiple of 128 bits. Round |bits|
// down as needed.
bits &= ~127;
// Reject excessively small keys.
if (bits < 256) {
OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL);
return 0;
}
// Reject excessively large public exponents. Windows CryptoAPI and Go don't
// support values larger than 32 bits, so match their limits for generating
// keys. (|is_public_component_of_rsa_key_good| uses a slightly more
// conservative value, but we don't need to support generating such keys.)
// https://github.com/golang/go/issues/3161
// https://msdn.microsoft.com/en-us/library/aa387685(VS.85).aspx
if (BN_num_bits(e_value) > 32) {
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_E_VALUE);
return 0;
}
int ret = 0;
int prime_bits = bits / 2;
BN_CTX *ctx = BN_CTX_new();
if (ctx == NULL) {
goto bn_err;
}
BN_CTX_start(ctx);
BIGNUM *totient = BN_CTX_get(ctx);
BIGNUM *pm1 = BN_CTX_get(ctx);
BIGNUM *qm1 = BN_CTX_get(ctx);
BIGNUM *sqrt2 = BN_CTX_get(ctx);
BIGNUM *pow2_prime_bits_100 = BN_CTX_get(ctx);
BIGNUM *pow2_prime_bits = BN_CTX_get(ctx);
if (totient == NULL || pm1 == NULL || qm1 == NULL || sqrt2 == NULL ||
pow2_prime_bits_100 == NULL || pow2_prime_bits == NULL ||
!BN_set_bit(pow2_prime_bits_100, prime_bits - 100) ||
!BN_set_bit(pow2_prime_bits, prime_bits)) {
goto bn_err;
}
// We need the RSA components non-NULL.
if (!ensure_bignum(&rsa->n) ||
!ensure_bignum(&rsa->d) ||
!ensure_bignum(&rsa->e) ||
!ensure_bignum(&rsa->p) ||
!ensure_bignum(&rsa->q) ||
!ensure_bignum(&rsa->dmp1) ||
!ensure_bignum(&rsa->dmq1)) {
goto bn_err;
}
if (!BN_copy(rsa->e, e_value)) {
goto bn_err;
}
// Compute sqrt2 >= ⌊2^(prime_bits-1)×√2⌋.
if (!bn_set_words(sqrt2, kBoringSSLRSASqrtTwo, kBoringSSLRSASqrtTwoLen)) {
goto bn_err;
}
int sqrt2_bits = kBoringSSLRSASqrtTwoLen * BN_BITS2;
assert(sqrt2_bits == (int)BN_num_bits(sqrt2));
if (sqrt2_bits > prime_bits) {
// For key sizes up to 4096 (prime_bits = 2048), this is exactly
// ⌊2^(prime_bits-1)×√2⌋.
if (!BN_rshift(sqrt2, sqrt2, sqrt2_bits - prime_bits)) {
goto bn_err;
}
} else if (prime_bits > sqrt2_bits) {
// For key sizes beyond 4096, this is approximate. We err towards retrying
// to ensure our key is the right size and round up.
if (!BN_add_word(sqrt2, 1) ||
!BN_lshift(sqrt2, sqrt2, prime_bits - sqrt2_bits)) {
goto bn_err;
}
}
assert(prime_bits == (int)BN_num_bits(sqrt2));
do {
// Generate p and q, each of size |prime_bits|, using the steps outlined in
// appendix FIPS 186-4 appendix B.3.3.
//
// Each call to |generate_prime| fails with probability p = 2^-21. The
// probability that either call fails is 1 - (1-p)^2, which is around 2^-20.
if (!generate_prime(rsa->p, prime_bits, rsa->e, NULL, sqrt2,
pow2_prime_bits_100, ctx, cb) ||
!BN_GENCB_call(cb, 3, 0) ||
!generate_prime(rsa->q, prime_bits, rsa->e, rsa->p, sqrt2,
pow2_prime_bits_100, ctx, cb) ||
!BN_GENCB_call(cb, 3, 1)) {
goto bn_err;
}
if (BN_cmp(rsa->p, rsa->q) < 0) {
BIGNUM *tmp = rsa->p;
rsa->p = rsa->q;
rsa->q = tmp;
}
// Calculate d = e^(-1) (mod lcm(p-1, q-1)), per FIPS 186-4. This differs
// from typical RSA implementations which use (p-1)*(q-1).
//
// Note this means the size of d might reveal information about p-1 and
// q-1. However, we do operations with Chinese Remainder Theorem, so we only
// use d (mod p-1) and d (mod q-1) as exponents. Using a minimal totient
// does not affect those two values.
int no_inverse;
if (!bn_usub_consttime(pm1, rsa->p, BN_value_one()) ||
!bn_usub_consttime(qm1, rsa->q, BN_value_one()) ||
!bn_lcm_consttime(totient, pm1, qm1, ctx) ||
!bn_mod_inverse_consttime(rsa->d, &no_inverse, rsa->e, totient, ctx)) {
goto bn_err;
}
// Retry if |rsa->d| <= 2^|prime_bits|. See appendix B.3.1's guidance on
// values for d. When we retry, p and q are discarded, so it is safe to leak
// this comparison.
} while (constant_time_declassify_int(BN_cmp(rsa->d, pow2_prime_bits) <= 0));
assert(BN_num_bits(pm1) == (unsigned)prime_bits);
assert(BN_num_bits(qm1) == (unsigned)prime_bits);
if (// Calculate n.
!bn_mul_consttime(rsa->n, rsa->p, rsa->q, ctx) ||
// Calculate d mod (p-1).
!bn_div_consttime(NULL, rsa->dmp1, rsa->d, pm1, prime_bits, ctx) ||
// Calculate d mod (q-1)
!bn_div_consttime(NULL, rsa->dmq1, rsa->d, qm1, prime_bits, ctx)) {
goto bn_err;
}
bn_set_minimal_width(rsa->n);
// |rsa->n| is computed from the private key, but is public.
bn_declassify(rsa->n);
// Sanity-check that |rsa->n| has the specified size. This is implied by
// |generate_prime|'s bounds.
if (BN_num_bits(rsa->n) != (unsigned)bits) {
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
goto err;
}
// Call |freeze_private_key| to compute the inverse of q mod p, by way of
// |rsa->mont_p|.
if (!freeze_private_key(rsa, ctx)) {
goto bn_err;
}
// The key generation process is complex and thus error-prone. It could be
// disastrous to generate and then use a bad key so double-check that the key
// makes sense.
if (!RSA_check_key(rsa)) {
OPENSSL_PUT_ERROR(RSA, RSA_R_INTERNAL_ERROR);
goto err;
}
ret = 1;
bn_err:
if (!ret) {
OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN);
}
err:
if (ctx != NULL) {
BN_CTX_end(ctx);
BN_CTX_free(ctx);
}
return ret;
}