crypto/asn1/tasn_dec.c (871 lines of code) (raw):

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #include <openssl/asn1.h> #include <openssl/asn1t.h> #include <openssl/bytestring.h> #include <openssl/err.h> #include <openssl/mem.h> #include <limits.h> #include <string.h> #include "../internal.h" #include "internal.h" // Constructed types with a recursive definition (such as can be found in PKCS7) // could eventually exceed the stack given malicious input with excessive // recursion. Therefore we limit the stack depth. This is the maximum number of // recursive invocations of asn1_item_embed_d2i(). #define ASN1_MAX_CONSTRUCTED_NEST 30 static int asn1_check_eoc(const unsigned char **in, long len); static int asn1_find_end(const unsigned char **in, long len, char inf); static int asn1_collect(BUF_MEM *buf, const unsigned char **in, long len, char inf, int tag, int aclass, int depth); static int collect_data(BUF_MEM *buf, const unsigned char **p, long plen); static int asn1_check_tlen(long *olen, int *otag, unsigned char *oclass, char *inf, char *cst, const unsigned char **in, long len, int exptag, int expclass, char opt); static int asn1_template_ex_d2i(ASN1_VALUE **pval, const unsigned char **in, long len, const ASN1_TEMPLATE *tt, char opt, int depth); static int asn1_template_noexp_d2i(ASN1_VALUE **val, const unsigned char **in, long len, const ASN1_TEMPLATE *tt, char opt, int depth); static int asn1_ex_c2i(ASN1_VALUE **pval, const unsigned char *cont, long len, int utype, const ASN1_ITEM *it); static int asn1_d2i_ex_primitive(ASN1_VALUE **pval, const unsigned char **in, long len, const ASN1_ITEM *it, int tag, int aclass, char opt); static int asn1_item_ex_d2i(ASN1_VALUE **pval, const unsigned char **in, long len, const ASN1_ITEM *it, int tag, int aclass, char opt, int depth); // Table to convert tags to bit values, used for MSTRING type static const unsigned long tag2bit[31] = { 0, // (reserved) 0, // BOOLEAN 0, // INTEGER B_ASN1_BIT_STRING, B_ASN1_OCTET_STRING, 0, // NULL 0, // OBJECT IDENTIFIER B_ASN1_UNKNOWN, // ObjectDescriptor B_ASN1_UNKNOWN, // EXTERNAL B_ASN1_UNKNOWN, // REAL B_ASN1_UNKNOWN, // ENUMERATED B_ASN1_UNKNOWN, // EMBEDDED PDV B_ASN1_UTF8STRING, B_ASN1_UNKNOWN, // RELATIVE-OID B_ASN1_UNKNOWN, // TIME B_ASN1_UNKNOWN, // (reserved) B_ASN1_SEQUENCE, 0, // SET B_ASN1_NUMERICSTRING, B_ASN1_PRINTABLESTRING, B_ASN1_T61STRING, B_ASN1_VIDEOTEXSTRING, B_ASN1_IA5STRING, B_ASN1_UTCTIME, B_ASN1_GENERALIZEDTIME, B_ASN1_GRAPHICSTRING, B_ASN1_ISO64STRING, B_ASN1_GENERALSTRING, B_ASN1_UNIVERSALSTRING, B_ASN1_UNKNOWN, // CHARACTER STRING B_ASN1_BMPSTRING, }; unsigned long ASN1_tag2bit(int tag) { if (tag < 0 || tag > 30) { return 0; } return tag2bit[tag]; } // Macro to initialize and invalidate the cache // Decode an ASN1 item, this currently behaves just like a standard 'd2i' // function. 'in' points to a buffer to read the data from, in future we // will have more advanced versions that can input data a piece at a time and // this will simply be a special case. ASN1_VALUE *ASN1_item_d2i(ASN1_VALUE **pval, const unsigned char **in, long len, const ASN1_ITEM *it) { ASN1_VALUE *ptmpval = NULL; if (!pval) { pval = &ptmpval; } if (asn1_item_ex_d2i(pval, in, len, it, -1, 0, 0, 0) > 0) { return *pval; } return NULL; } // Decode an item, taking care of IMPLICIT tagging, if any. If 'opt' set and // tag mismatch return -1 to handle OPTIONAL static int asn1_item_ex_d2i(ASN1_VALUE **pval, const unsigned char **in, long len, const ASN1_ITEM *it, int tag, int aclass, char opt, int depth) { const ASN1_TEMPLATE *tt, *errtt = NULL; const ASN1_EXTERN_FUNCS *ef; const unsigned char *p = NULL, *q; unsigned char oclass; char seq_eoc, seq_nolen, cst, isopt; int i; int otag; int ret = 0; ASN1_VALUE **pchptr; int combine = aclass & ASN1_TFLG_COMBINE; aclass &= ~ASN1_TFLG_COMBINE; if (pval == NULL || it == NULL) { return 0; } // Bound |len| to comfortably fit in an int. Lengths in this module often // switch between int and long without overflow checks. if (len > INT_MAX / 2) { len = INT_MAX / 2; } if (++depth > ASN1_MAX_CONSTRUCTED_NEST) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_TOO_DEEP); goto err; } switch (it->itype) { case ASN1_ITYPE_PRIMITIVE: if (it->templates) { // tagging or OPTIONAL is currently illegal on an item template // because the flags can't get passed down. In practice this // isn't a problem: we include the relevant flags from the item // template in the template itself. if ((tag != -1) || opt) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_ILLEGAL_OPTIONS_ON_ITEM_TEMPLATE); goto err; } return asn1_template_ex_d2i(pval, in, len, it->templates, opt, depth); } return asn1_d2i_ex_primitive(pval, in, len, it, tag, aclass, opt); break; case ASN1_ITYPE_MSTRING: // It never makes sense for multi-strings to have implicit tagging, so // if tag != -1, then this looks like an error in the template. if (tag != -1) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_BAD_TEMPLATE); goto err; } p = *in; // Just read in tag and class ret = asn1_check_tlen(NULL, &otag, &oclass, NULL, NULL, &p, len, -1, 0, 1); if (!ret) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_ASN1_ERROR); goto err; } // Must be UNIVERSAL class if (oclass != V_ASN1_UNIVERSAL) { // If OPTIONAL, assume this is OK if (opt) { return -1; } OPENSSL_PUT_ERROR(ASN1, ASN1_R_MSTRING_NOT_UNIVERSAL); goto err; } // Check tag matches bit map if (!(ASN1_tag2bit(otag) & it->utype)) { // If OPTIONAL, assume this is OK if (opt) { return -1; } OPENSSL_PUT_ERROR(ASN1, ASN1_R_MSTRING_WRONG_TAG); goto err; } return asn1_d2i_ex_primitive(pval, in, len, it, otag, 0, 0); case ASN1_ITYPE_EXTERN: // Use new style d2i ef = it->funcs; return ef->asn1_ex_d2i(pval, in, len, it, tag, aclass, opt, NULL); case ASN1_ITYPE_CHOICE: { // It never makes sense for CHOICE types to have implicit tagging, so if // tag != -1, then this looks like an error in the template. if (tag != -1) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_BAD_TEMPLATE); goto err; } const ASN1_AUX *aux = it->funcs; ASN1_aux_cb *asn1_cb = aux != NULL ? aux->asn1_cb : NULL; if (asn1_cb && !asn1_cb(ASN1_OP_D2I_PRE, pval, it, NULL)) { goto auxerr; } if (*pval) { // Free up and zero CHOICE value if initialised i = asn1_get_choice_selector(pval, it); if ((i >= 0) && (i < it->tcount)) { tt = it->templates + i; pchptr = asn1_get_field_ptr(pval, tt); ASN1_template_free(pchptr, tt); asn1_set_choice_selector(pval, -1, it); } } else if (!ASN1_item_ex_new(pval, it)) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_ASN1_ERROR); goto err; } // CHOICE type, try each possibility in turn p = *in; for (i = 0, tt = it->templates; i < it->tcount; i++, tt++) { pchptr = asn1_get_field_ptr(pval, tt); // We mark field as OPTIONAL so its absence can be recognised. ret = asn1_template_ex_d2i(pchptr, &p, len, tt, 1, depth); // If field not present, try the next one if (ret == -1) { continue; } // If positive return, read OK, break loop if (ret > 0) { break; } // Otherwise must be an ASN1 parsing error errtt = tt; OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_ASN1_ERROR); goto err; } // Did we fall off the end without reading anything? if (i == it->tcount) { // If OPTIONAL, this is OK if (opt) { // Free and zero it ASN1_item_ex_free(pval, it); return -1; } OPENSSL_PUT_ERROR(ASN1, ASN1_R_NO_MATCHING_CHOICE_TYPE); goto err; } asn1_set_choice_selector(pval, i, it); if (asn1_cb && !asn1_cb(ASN1_OP_D2I_POST, pval, it, NULL)) { goto auxerr; } *in = p; return 1; } case ASN1_ITYPE_SEQUENCE: { p = *in; // If no IMPLICIT tagging set to SEQUENCE, UNIVERSAL if (tag == -1) { tag = V_ASN1_SEQUENCE; aclass = V_ASN1_UNIVERSAL; } // Get SEQUENCE length and update len, p ret = asn1_check_tlen(&len, NULL, NULL, &seq_eoc, &cst, &p, len, tag, aclass, opt); if (!ret) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_ASN1_ERROR); goto err; } else if (ret == -1) { return -1; } // If indefinite we don't do a length check. seq_nolen = seq_eoc; if (!cst) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_SEQUENCE_NOT_CONSTRUCTED); goto err; } if (!*pval && !ASN1_item_ex_new(pval, it)) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_ASN1_ERROR); goto err; } const ASN1_AUX *aux = it->funcs; ASN1_aux_cb *asn1_cb = aux != NULL ? aux->asn1_cb : NULL; if (asn1_cb && !asn1_cb(ASN1_OP_D2I_PRE, pval, it, NULL)) { goto auxerr; } // Free up and zero any ADB found for (i = 0, tt = it->templates; i < it->tcount; i++, tt++) { if (tt->flags & ASN1_TFLG_ADB_MASK) { const ASN1_TEMPLATE *seqtt; ASN1_VALUE **pseqval; seqtt = asn1_do_adb(pval, tt, 0); if (seqtt == NULL) { continue; } pseqval = asn1_get_field_ptr(pval, seqtt); ASN1_template_free(pseqval, seqtt); } } // Get each field entry for (i = 0, tt = it->templates; i < it->tcount; i++, tt++) { const ASN1_TEMPLATE *seqtt; ASN1_VALUE **pseqval; seqtt = asn1_do_adb(pval, tt, 1); if (seqtt == NULL) { goto err; } pseqval = asn1_get_field_ptr(pval, seqtt); // Have we ran out of data? if (!len) { break; } q = p; // |asn1_check_eoc| does a check for eoc (the indefinite length // terminator) here. |seq_eoc| determines if we had found "0x80" earlier // to indicate indefinite length is being used and we error out if eoc // wasn't expected. if (asn1_check_eoc(&p, len)) { if (!seq_eoc) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_UNEXPECTED_EOC); goto err; } len -= p - q; seq_eoc = 0; break; } // This determines the OPTIONAL flag value. The field cannot be // omitted if it is the last of a SEQUENCE and there is still // data to be read. This isn't strictly necessary but it // increases efficiency in some cases. if (i == (it->tcount - 1)) { isopt = 0; } else { isopt = (seqtt->flags & ASN1_TFLG_OPTIONAL) != 0; } // attempt to read in field, allowing each to be OPTIONAL ret = asn1_template_ex_d2i(pseqval, &p, len, seqtt, isopt, depth); if (!ret) { errtt = seqtt; goto err; } else if (ret == -1) { // OPTIONAL component absent. Free and zero the field. ASN1_template_free(pseqval, seqtt); continue; } // Update length len -= p - q; } // Check for EOC if expecting one. if (seq_eoc && !asn1_check_eoc(&p, len)) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_MISSING_EOC); goto err; } // Check all data read if (!seq_nolen && len) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_SEQUENCE_LENGTH_MISMATCH); goto err; } // If we get here we've got no more data in the SEQUENCE, however we // may not have read all fields so check all remaining are OPTIONAL // and clear any that are. for (; i < it->tcount; tt++, i++) { const ASN1_TEMPLATE *seqtt; seqtt = asn1_do_adb(pval, tt, 1); if (seqtt == NULL) { goto err; } if (seqtt->flags & ASN1_TFLG_OPTIONAL) { ASN1_VALUE **pseqval; pseqval = asn1_get_field_ptr(pval, seqtt); ASN1_template_free(pseqval, seqtt); } else { errtt = seqtt; OPENSSL_PUT_ERROR(ASN1, ASN1_R_FIELD_MISSING); goto err; } } // Save encoding if (!asn1_enc_save(pval, *in, p - *in, it)) { goto auxerr; } if (asn1_cb && !asn1_cb(ASN1_OP_D2I_POST, pval, it, NULL)) { goto auxerr; } *in = p; return 1; } default: return 0; } auxerr: OPENSSL_PUT_ERROR(ASN1, ASN1_R_AUX_ERROR); err: if (combine == 0) { ASN1_item_ex_free(pval, it); } if (errtt) { ERR_add_error_data(4, "Field=", errtt->field_name, ", Type=", it->sname); } else { ERR_add_error_data(2, "Type=", it->sname); } return 0; } int ASN1_item_ex_d2i(ASN1_VALUE **pval, const unsigned char **in, long len, const ASN1_ITEM *it, int tag, int aclass, char opt, ASN1_TLC *ctx) { return asn1_item_ex_d2i(pval, in, len, it, tag, aclass, opt, 0); } // Templates are handled with two separate functions. One handles any // EXPLICIT tag and the other handles the rest. static int asn1_template_ex_d2i(ASN1_VALUE **val, const unsigned char **in, long inlen, const ASN1_TEMPLATE *tt, char opt, int depth) { int aclass; int ret; long len; const unsigned char *p, *q; char exp_eoc; if (!val) { return 0; } uint32_t flags = tt->flags; aclass = flags & ASN1_TFLG_TAG_CLASS; p = *in; // Check if EXPLICIT tag expected if (flags & ASN1_TFLG_EXPTAG) { char cst; // Need to work out amount of data available to the inner content and // where it starts: so read in EXPLICIT header to get the info. ret = asn1_check_tlen(&len, NULL, NULL, &exp_eoc, &cst, &p, inlen, tt->tag, aclass, opt); q = p; if (!ret) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_ASN1_ERROR); return 0; } else if (ret == -1) { return -1; } if (!cst) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_EXPLICIT_TAG_NOT_CONSTRUCTED); return 0; } // We've found the field so it can't be OPTIONAL now ret = asn1_template_noexp_d2i(val, &p, len, tt, 0, depth); if (!ret) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_ASN1_ERROR); return 0; } // We read the field in OK so update length len -= p - q; if (exp_eoc) { // If NDEF we must have an EOC here. if (!asn1_check_eoc(&p, len)) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_MISSING_EOC); goto err; } } else { // Otherwise we must hit the EXPLICIT tag end or its an error if (len) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_EXPLICIT_LENGTH_MISMATCH); goto err; } } } else { return asn1_template_noexp_d2i(val, in, inlen, tt, opt, depth); } *in = p; return 1; err: ASN1_template_free(val, tt); return 0; } static int asn1_template_noexp_d2i(ASN1_VALUE **val, const unsigned char **in, long len, const ASN1_TEMPLATE *tt, char opt, int depth) { int aclass; int ret; const unsigned char *p; if (!val) { return 0; } uint32_t flags = tt->flags; aclass = flags & ASN1_TFLG_TAG_CLASS; p = *in; if (flags & ASN1_TFLG_SK_MASK) { // SET OF, SEQUENCE OF int sktag, skaclass; char sk_eoc; // First work out expected inner tag value if (flags & ASN1_TFLG_IMPTAG) { sktag = tt->tag; skaclass = aclass; } else { skaclass = V_ASN1_UNIVERSAL; if (flags & ASN1_TFLG_SET_OF) { sktag = V_ASN1_SET; } else { sktag = V_ASN1_SEQUENCE; } } // Get the tag ret = asn1_check_tlen(&len, NULL, NULL, &sk_eoc, NULL, &p, len, sktag, skaclass, opt); if (!ret) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_ASN1_ERROR); return 0; } else if (ret == -1) { return -1; } if (!*val) { *val = (ASN1_VALUE *)sk_ASN1_VALUE_new_null(); } else { // We've got a valid STACK: free up any items present STACK_OF(ASN1_VALUE) *sktmp = (STACK_OF(ASN1_VALUE) *)*val; ASN1_VALUE *vtmp; while (sk_ASN1_VALUE_num(sktmp) > 0) { vtmp = sk_ASN1_VALUE_pop(sktmp); ASN1_item_ex_free(&vtmp, ASN1_ITEM_ptr(tt->item)); } } if (!*val) { goto err; } // Read as many items as we can while (len > 0) { ASN1_VALUE *skfield; const unsigned char *q = p; // See if EOC found. if (asn1_check_eoc(&p, len)) { if (!sk_eoc) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_UNEXPECTED_EOC); goto err; } len -= p - q; sk_eoc = 0; break; } skfield = NULL; if (!asn1_item_ex_d2i(&skfield, &p, len, ASN1_ITEM_ptr(tt->item), -1, 0, 0, depth)) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_ASN1_ERROR); goto err; } len -= p - q; if (!sk_ASN1_VALUE_push((STACK_OF(ASN1_VALUE) *)*val, skfield)) { ASN1_item_ex_free(&skfield, ASN1_ITEM_ptr(tt->item)); goto err; } } if (sk_eoc) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_MISSING_EOC); goto err; } } else if (flags & ASN1_TFLG_IMPTAG) { // IMPLICIT tagging ret = asn1_item_ex_d2i(val, &p, len, ASN1_ITEM_ptr(tt->item), tt->tag, aclass, opt, depth); if (!ret) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_ASN1_ERROR); goto err; } else if (ret == -1) { return -1; } } else { // Nothing special ret = asn1_item_ex_d2i(val, &p, len, ASN1_ITEM_ptr(tt->item), -1, tt->flags & ASN1_TFLG_COMBINE, opt, depth); if (!ret) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_ASN1_ERROR); goto err; } else if (ret == -1) { return -1; } } *in = p; return 1; err: ASN1_template_free(val, tt); return 0; } static int asn1_d2i_ex_primitive(ASN1_VALUE **pval, const unsigned char **in, long inlen, const ASN1_ITEM *it, int tag, int aclass, char opt) { int ret = 0, utype; long plen; char cst, inf; const unsigned char *p; BUF_MEM buf = {0, NULL, 0 }; const unsigned char *cont = NULL; long len; if (!pval) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_ILLEGAL_NULL); return 0; // Should never happen } if (it->itype == ASN1_ITYPE_MSTRING) { utype = tag; tag = -1; } else { utype = it->utype; } if (utype == V_ASN1_ANY) { // If type is ANY need to figure out type from tag unsigned char oclass; if (tag >= 0) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_ILLEGAL_TAGGED_ANY); return 0; } if (opt) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_ILLEGAL_OPTIONAL_ANY); return 0; } p = *in; ret = asn1_check_tlen(NULL, &utype, &oclass, NULL, NULL, &p, inlen, -1, 0, 0); if (!ret) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_ASN1_ERROR); return 0; } if (oclass != V_ASN1_UNIVERSAL) { utype = V_ASN1_OTHER; } } if (tag == -1) { tag = utype; aclass = V_ASN1_UNIVERSAL; } p = *in; // Check header ret = asn1_check_tlen(&plen, NULL, NULL, &inf, &cst, &p, inlen, tag, aclass, opt); if (!ret) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_ASN1_ERROR); return 0; } else if (ret == -1) { return -1; } ret = 0; // SEQUENCE, SET and "OTHER" are left in encoded form if ((utype == V_ASN1_SEQUENCE) || (utype == V_ASN1_SET) || (utype == V_ASN1_OTHER)) { // SEQUENCE and SET must be constructed if (utype != V_ASN1_OTHER && !cst) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_TYPE_NOT_CONSTRUCTED); return 0; } cont = *in; // If indefinite length constructed, find the real end. if (inf) { if (!asn1_find_end(&p, plen, inf)) { goto err; } len = p - cont; } else { len = p - cont + plen; p += plen; } } else if (cst) { if (utype == V_ASN1_NULL || utype == V_ASN1_BOOLEAN || utype == V_ASN1_OBJECT || utype == V_ASN1_INTEGER || utype == V_ASN1_ENUMERATED) { // These types only have primitive encodings. OPENSSL_PUT_ERROR(ASN1, ASN1_R_TYPE_NOT_PRIMITIVE); return 0; } // Should really check the internal tags are correct but some things // may get this wrong. The relevant specs say that constructed string // types should be OCTET STRINGs internally irrespective of the type. // So instead just check for UNIVERSAL class and ignore the tag. if (!asn1_collect(&buf, &p, plen, inf, -1, V_ASN1_UNIVERSAL, 0)) { goto err; } len = buf.length; // Append a final null to string. if (!BUF_MEM_grow_clean(&buf, len + 1)) { goto err; } buf.data[len] = 0; cont = (const unsigned char *)buf.data; } else { cont = p; len = plen; p += plen; } // We now have content length and type: translate into a structure if (!asn1_ex_c2i(pval, cont, len, utype, it)) { goto err; } *in = p; ret = 1; err: OPENSSL_free(buf.data); return ret; } // Translate ASN1 content octets into a structure static int asn1_ex_c2i(ASN1_VALUE **pval, const unsigned char *cont, long len, int utype, const ASN1_ITEM *it) { ASN1_VALUE **opval = NULL; ASN1_STRING *stmp; ASN1_TYPE *typ = NULL; int ret = 0; ASN1_INTEGER **tint; // Historically, |it->funcs| for primitive types contained an // |ASN1_PRIMITIVE_FUNCS| table of callbacks. assert(it->funcs == NULL); // If ANY type clear type and set pointer to internal value if (it->utype == V_ASN1_ANY) { if (!*pval) { typ = ASN1_TYPE_new(); if (typ == NULL) { goto err; } *pval = (ASN1_VALUE *)typ; } else { typ = (ASN1_TYPE *)*pval; } if (utype != typ->type) { ASN1_TYPE_set(typ, utype, NULL); } opval = pval; pval = &typ->value.asn1_value; } switch (utype) { case V_ASN1_OBJECT: if (!c2i_ASN1_OBJECT((ASN1_OBJECT **)pval, &cont, len)) { goto err; } break; case V_ASN1_NULL: if (len) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_NULL_IS_WRONG_LENGTH); goto err; } *pval = (ASN1_VALUE *)1; break; case V_ASN1_BOOLEAN: if (len != 1) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_BOOLEAN_IS_WRONG_LENGTH); goto err; } else { ASN1_BOOLEAN *tbool; tbool = (ASN1_BOOLEAN *)pval; *tbool = *cont; } break; case V_ASN1_BIT_STRING: if (!c2i_ASN1_BIT_STRING((ASN1_BIT_STRING **)pval, &cont, len)) { goto err; } break; case V_ASN1_INTEGER: case V_ASN1_ENUMERATED: tint = (ASN1_INTEGER **)pval; if (!c2i_ASN1_INTEGER(tint, &cont, len)) { goto err; } // Fixup type to match the expected form (*tint)->type = utype | ((*tint)->type & V_ASN1_NEG); break; case V_ASN1_OCTET_STRING: case V_ASN1_NUMERICSTRING: case V_ASN1_PRINTABLESTRING: case V_ASN1_T61STRING: case V_ASN1_VIDEOTEXSTRING: case V_ASN1_IA5STRING: case V_ASN1_UTCTIME: case V_ASN1_GENERALIZEDTIME: case V_ASN1_GRAPHICSTRING: case V_ASN1_VISIBLESTRING: case V_ASN1_GENERALSTRING: case V_ASN1_UNIVERSALSTRING: case V_ASN1_BMPSTRING: case V_ASN1_UTF8STRING: case V_ASN1_OTHER: case V_ASN1_SET: case V_ASN1_SEQUENCE: default: if (utype == V_ASN1_BMPSTRING && (len & 1)) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_BMPSTRING_IS_WRONG_LENGTH); goto err; } if (utype == V_ASN1_UNIVERSALSTRING && (len & 3)) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_UNIVERSALSTRING_IS_WRONG_LENGTH); goto err; } if (utype == V_ASN1_UTCTIME) { CBS cbs; CBS_init(&cbs, cont, (size_t)len); if (!CBS_parse_utc_time(&cbs, NULL, /*allow_timezone_offset=*/1)) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_INVALID_TIME_FORMAT); goto err; } } if (utype == V_ASN1_GENERALIZEDTIME) { CBS cbs; CBS_init(&cbs, cont, (size_t)len); if (!CBS_parse_generalized_time(&cbs, NULL, /*allow_timezone_offset=*/0)) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_INVALID_TIME_FORMAT); goto err; } } // All based on ASN1_STRING and handled the same if (!*pval) { stmp = ASN1_STRING_type_new(utype); if (!stmp) { goto err; } *pval = (ASN1_VALUE *)stmp; } else { stmp = (ASN1_STRING *)*pval; stmp->type = utype; } if (!ASN1_STRING_set(stmp, cont, len)) { ASN1_STRING_free(stmp); *pval = NULL; goto err; } break; } // If ASN1_ANY and NULL type fix up value if (typ && (utype == V_ASN1_NULL)) { typ->value.ptr = NULL; } ret = 1; err: if (!ret) { ASN1_TYPE_free(typ); if (opval) { *opval = NULL; } } return ret; } // This function finds the end of an ASN1 structure when passed its maximum // length, whether it is indefinite length and a pointer to the content. This // is more efficient than calling asn1_collect because it does not recurse on // each indefinite length header. static int asn1_find_end(const unsigned char **in, long len, char inf) { uint32_t expected_eoc; long plen; const unsigned char *p = *in, *q; // If not indefinite length constructed just add length. if (inf == 0) { *in += len; return 1; } expected_eoc = 1; // Indefinite length constructed form. Find the end when enough EOCs are // found. If more indefinite length constructed headers are encountered // increment the expected eoc count otherwise just skip to the end of the // data. while (len > 0) { if (asn1_check_eoc(&p, len)) { expected_eoc--; if (expected_eoc == 0) { break; } len -= 2; continue; } q = p; // Just read in a header: only care about the length. if (!asn1_check_tlen(&plen, NULL, NULL, &inf, NULL, &p, len, -1, 0, 0)) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_ASN1_ERROR); return 0; } if (inf) { // This checks for an underflow due to the loop subtraction done on // |expected_eoc| above. if (expected_eoc == UINT32_MAX) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_ASN1_ERROR); return 0; } expected_eoc++; } else { p += plen; } len -= p - q; } if (expected_eoc) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_MISSING_EOC); return 0; } *in = p; return 1; } // This function collects the asn1 data from a constructed string type into // a buffer. The values of 'in' and 'len' should refer to the contents of the // constructed type and 'inf' should be set if it is indefinite length. // This determines how many levels of recursion are permitted in ASN1 string // types. If it is not limited stack overflows can occur. If set to zero no // recursion is allowed at all. Although zero should be adequate examples // exist that require a value of 1. So 5 should be more than enough. #define ASN1_MAX_STRING_NEST 5 static int asn1_collect(BUF_MEM *buf, const unsigned char **in, long len, char inf, int tag, int aclass, int depth) { const unsigned char *p, *q; long plen; char cst, ininf; p = *in; inf &= 1; // If no buffer and not indefinite length constructed just pass over the // encoded data if (!buf && !inf) { *in += len; return 1; } while (len > 0) { q = p; // Check for EOC. if (asn1_check_eoc(&p, len)) { // EOC is illegal outside indefinite length constructed form if (!inf) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_UNEXPECTED_EOC); return 0; } inf = 0; break; } if (!asn1_check_tlen(&plen, NULL, NULL, &ininf, &cst, &p, len, tag, aclass, 0)) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_ASN1_ERROR); return 0; } // If indefinite length constructed, update max length. if (cst) { if (depth >= ASN1_MAX_STRING_NEST) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_ASN1_STRING); return 0; } if (!asn1_collect(buf, &p, plen, ininf, tag, aclass, depth + 1)) { return 0; } } else if (plen && !collect_data(buf, &p, plen)) { return 0; } len -= p - q; } if (inf) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_MISSING_EOC); return 0; } *in = p; return 1; } static int collect_data(BUF_MEM *buf, const unsigned char **p, long plen) { int len; if (buf) { len = buf->length; if (!BUF_MEM_grow_clean(buf, len + plen)) { return 0; } OPENSSL_memcpy(buf->data + len, *p, plen); } *p += plen; return 1; } // Check for ASN1 EOC and swallow it if found. Returns 1 if found and 0 if none. static int asn1_check_eoc(const unsigned char **in, long len) { const unsigned char *p; if (len < 2) { return 0; } p = *in; if (p[0] == '\0' && p[1] == '\0') { *in += 2; return 1; } return 0; } // Check an ASN1 tag and length: a bit like ASN1_get_object but it sets the // length for indefinite length constructed form, we don't know the exact // length, but we can set an upper bound to the amount of data available minus // the header length just read. static int asn1_check_tlen(long *olen, int *otag, unsigned char *oclass, char *inf, char *cst, const unsigned char **in, long len, int exptag, int expclass, char opt) { int i; int ptag, pclass; long plen; const unsigned char *p, *q; p = *in; q = p; i = ASN1_get_object(&p, &plen, &ptag, &pclass, len); if (i & 0x80) { OPENSSL_PUT_ERROR(ASN1, ASN1_R_BAD_OBJECT_HEADER); return 0; } if (exptag >= 0) { if ((exptag != ptag) || (expclass != pclass)) { // If type is OPTIONAL, not an error: indicate missing type. if (opt) { return -1; } OPENSSL_PUT_ERROR(ASN1, ASN1_R_WRONG_TAG); return 0; } } // If indefinite, this sets an upper bound to the amount of data available // minus the header length just read. if (i & 1) { plen = len - (p - q); } // Indicate whether indefinite. if (inf != NULL) { *inf = i & 1; } if (cst) { *cst = i & V_ASN1_CONSTRUCTED; } if (olen) { *olen = plen; } if (oclass) { *oclass = pclass; } if (otag) { *otag = ptag; } *in = p; return 1; }