crypto/fipsmodule/digest/digests.c (389 lines of code) (raw):

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #include <openssl/digest.h> #include <assert.h> #include <string.h> #include <openssl/md4.h> #include <openssl/md5.h> #include <openssl/nid.h> #include <openssl/ripemd.h> #include <openssl/sha.h> #include "../../internal.h" #include "../sha/internal.h" #include "internal.h" #if defined(NDEBUG) #define CHECK(x) (void) (x) #else #define CHECK(x) assert(x) #endif static void md4_init(EVP_MD_CTX *ctx) { CHECK(MD4_Init(ctx->md_data)); } static int md4_update(EVP_MD_CTX *ctx, const void *data, size_t count) { // MD4_Update always returns 1. Internally called function // |crypto_md32_update| is void. For test consistency and future // compatibility, the return value is propagated and returned return MD4_Update(ctx->md_data, data, count); } static void md4_final(EVP_MD_CTX *ctx, uint8_t *out) { CHECK(MD4_Final(out, ctx->md_data)); } DEFINE_METHOD_FUNCTION(EVP_MD, EVP_md4) { out->type = NID_md4; out->md_size = MD4_DIGEST_LENGTH; out->flags = 0; out->init = md4_init; out->update = md4_update; out->final = md4_final; out->squeezeXOF = NULL; out->finalXOF = NULL; out->block_size = 64; out->ctx_size = sizeof(MD4_CTX); } static void md5_init(EVP_MD_CTX *ctx) { CHECK(MD5_Init(ctx->md_data)); } static int md5_update(EVP_MD_CTX *ctx, const void *data, size_t count) { // MD5_Update always returns 1. Internally called function // |crypto_md32_update| is void. For test consistency and future // compatibility, the return value is propagated and returned return MD5_Update(ctx->md_data, data, count); } static void md5_final(EVP_MD_CTX *ctx, uint8_t *out) { CHECK(MD5_Final(out, ctx->md_data)); } DEFINE_METHOD_FUNCTION(EVP_MD, EVP_md5) { out->type = NID_md5; out->md_size = MD5_DIGEST_LENGTH; out->flags = 0; out->init = md5_init; out->update = md5_update; out->final = md5_final; out->squeezeXOF = NULL; out->finalXOF = NULL; out->block_size = 64; out->ctx_size = sizeof(MD5_CTX); } static void ripemd160_init(EVP_MD_CTX *ctx) { CHECK(RIPEMD160_Init(ctx->md_data)); } static int ripemd160_update(EVP_MD_CTX *ctx, const void *data, size_t count) { // RIPEMD160_Update always returns 1. Internally called function // |crypto_md32_update| is void. For test consistency and future // compatibility, the return value is propagated and returned return RIPEMD160_Update(ctx->md_data, data, count); } static void ripemd160_final(EVP_MD_CTX *ctx, uint8_t *out) { CHECK(RIPEMD160_Final(out, ctx->md_data)); } DEFINE_METHOD_FUNCTION(EVP_MD, EVP_ripemd160) { out->type = NID_ripemd160; out->md_size = RIPEMD160_DIGEST_LENGTH; out->flags = 0; out->init = ripemd160_init; out->update = ripemd160_update; out->final = ripemd160_final; out->squeezeXOF = NULL; out->finalXOF = NULL; out->block_size = 64; out->ctx_size = sizeof(RIPEMD160_CTX); } static void sha1_init(EVP_MD_CTX *ctx) { CHECK(SHA1_Init(ctx->md_data)); } static int sha1_update(EVP_MD_CTX *ctx, const void *data, size_t count) { // SHA1_Update always returns 1. Internally called function // |crypto_md32_update| is void. For test consistency and future // compatibility, the return value is propagated and returned return SHA1_Update(ctx->md_data, data, count); } static void sha1_final(EVP_MD_CTX *ctx, uint8_t *md) { CHECK(SHA1_Final(md, ctx->md_data)); } DEFINE_METHOD_FUNCTION(EVP_MD, EVP_sha1) { out->type = NID_sha1; out->md_size = SHA_DIGEST_LENGTH; out->flags = 0; out->init = sha1_init; out->update = sha1_update; out->final = sha1_final; out->squeezeXOF = NULL; out->finalXOF = NULL; out->block_size = 64; out->ctx_size = sizeof(SHA_CTX); } static void sha224_init(EVP_MD_CTX *ctx) { CHECK(SHA224_Init(ctx->md_data)); } static int sha224_update(EVP_MD_CTX *ctx, const void *data, size_t count) { // SHA224_Update always returns 1. Internally called function // |crypto_md32_update| through |SHA256_Update| is void. For test consistency // and future compatibility, the return value is propagated and returned return SHA224_Update(ctx->md_data, data, count); } static void sha224_final(EVP_MD_CTX *ctx, uint8_t *md) { CHECK(SHA224_Final(md, ctx->md_data)); } DEFINE_METHOD_FUNCTION(EVP_MD, EVP_sha224) { out->type = NID_sha224; out->md_size = SHA224_DIGEST_LENGTH; out->flags = 0; out->init = sha224_init; out->update = sha224_update; out->final = sha224_final; out->squeezeXOF = NULL; out->finalXOF = NULL; out->block_size = 64; out->ctx_size = sizeof(SHA256_CTX); } static void sha256_init(EVP_MD_CTX *ctx) { CHECK(SHA256_Init(ctx->md_data)); } static int sha256_update(EVP_MD_CTX *ctx, const void *data, size_t count) { // SHA256_Update always returns 1. Internally called function // |crypto_md32_update| is void. For test consistency and future // compatibility, the return value is propagated and returned return SHA256_Update(ctx->md_data, data, count); } static void sha256_final(EVP_MD_CTX *ctx, uint8_t *md) { CHECK(SHA256_Final(md, ctx->md_data)); } DEFINE_METHOD_FUNCTION(EVP_MD, EVP_sha256) { out->type = NID_sha256; out->md_size = SHA256_DIGEST_LENGTH; out->flags = 0; out->init = sha256_init; out->update = sha256_update; out->final = sha256_final; out->squeezeXOF = NULL; out->finalXOF = NULL; out->block_size = 64; out->ctx_size = sizeof(SHA256_CTX); } static void sha384_init(EVP_MD_CTX *ctx) { CHECK(SHA384_Init(ctx->md_data)); } static int sha384_update(EVP_MD_CTX *ctx, const void *data, size_t count) { // SHA384_Update always returns 1. Internally called function // |SHA512_Update| always returns 1. For test consistency // and future compatibility, the return value is propagated and returned return SHA384_Update(ctx->md_data, data, count); } static void sha384_final(EVP_MD_CTX *ctx, uint8_t *md) { CHECK(SHA384_Final(md, ctx->md_data)); } DEFINE_METHOD_FUNCTION(EVP_MD, EVP_sha384) { out->type = NID_sha384; out->md_size = SHA384_DIGEST_LENGTH; out->flags = 0; out->init = sha384_init; out->update = sha384_update; out->final = sha384_final; out->squeezeXOF = NULL; out->finalXOF = NULL; out->block_size = 128; out->ctx_size = sizeof(SHA512_CTX); } static void sha512_init(EVP_MD_CTX *ctx) { CHECK(SHA512_Init(ctx->md_data)); } static int sha512_update(EVP_MD_CTX *ctx, const void *data, size_t count) { // SHA512_Update always returns 1. For test consistency // and future compatibility, the return value is propagated and returned return SHA512_Update(ctx->md_data, data, count); } static void sha512_final(EVP_MD_CTX *ctx, uint8_t *md) { CHECK(SHA512_Final(md, ctx->md_data)); } DEFINE_METHOD_FUNCTION(EVP_MD, EVP_sha512) { out->type = NID_sha512; out->md_size = SHA512_DIGEST_LENGTH; out->flags = 0; out->init = sha512_init; out->update = sha512_update; out->final = sha512_final; out->squeezeXOF = NULL; out->finalXOF = NULL; out->block_size = 128; out->ctx_size = sizeof(SHA512_CTX); } static void sha512_224_init(EVP_MD_CTX *ctx) { CHECK(SHA512_224_Init(ctx->md_data)); } static int sha512_224_update(EVP_MD_CTX *ctx, const void *data, size_t count) { // SHA512_224_Update always returns 1. Internally called function // |SHA512_Update| always returns 1. For test consistency // and future compatibility, the return value is propagated and returned return SHA512_224_Update(ctx->md_data, data, count); } static void sha512_224_final(EVP_MD_CTX *ctx, uint8_t *md) { CHECK(SHA512_224_Final(md, ctx->md_data)); } DEFINE_METHOD_FUNCTION(EVP_MD, EVP_sha512_224) { out->type = NID_sha512_224; out->md_size = SHA512_224_DIGEST_LENGTH; out->flags = 0; out->init = sha512_224_init; out->update = sha512_224_update; out->final = sha512_224_final; out->block_size = 128; out->ctx_size = sizeof(SHA512_CTX); } static void sha512_256_init(EVP_MD_CTX *ctx) { CHECK(SHA512_256_Init(ctx->md_data)); } static int sha512_256_update(EVP_MD_CTX *ctx, const void *data, size_t count) { // SHA512_256_Update always returns 1. Internally called function // |SHA512_Update| always returns 1. For test consistency // and future compatibility, the return value is propagated and returned return SHA512_256_Update(ctx->md_data, data, count); } static void sha512_256_final(EVP_MD_CTX *ctx, uint8_t *md) { CHECK(SHA512_256_Final(md, ctx->md_data)); } DEFINE_METHOD_FUNCTION(EVP_MD, EVP_sha512_256) { out->type = NID_sha512_256; out->md_size = SHA512_256_DIGEST_LENGTH; out->flags = 0; out->init = sha512_256_init; out->update = sha512_256_update; out->final = sha512_256_final; out->squeezeXOF = NULL; out->finalXOF = NULL; out->block_size = 128; out->ctx_size = sizeof(SHA512_CTX); } static void sha3_224_init(EVP_MD_CTX *ctx) { CHECK(SHA3_Init(ctx->md_data, SHA3_224_DIGEST_BITLENGTH)); } static int sha3_224_update(EVP_MD_CTX *ctx, const void *data, size_t count) { // SHA3_Update returns 1 on success and 0 on failure. return SHA3_Update(ctx->md_data, data, count); } static void sha3_224_final(EVP_MD_CTX *ctx, uint8_t *md) { CHECK(SHA3_Final(md, ctx->md_data)); } DEFINE_METHOD_FUNCTION(EVP_MD, EVP_sha3_224) { out->type = NID_sha3_224; out->md_size = SHA3_224_DIGEST_LENGTH; out->flags = 0; out->init = sha3_224_init; out->update = sha3_224_update; out->final = sha3_224_final; out->squeezeXOF = NULL; out->finalXOF = NULL; out->block_size = SHA3_BLOCKSIZE(SHA3_224_DIGEST_BITLENGTH); out->ctx_size = sizeof(KECCAK1600_CTX); } static void sha3_256_init(EVP_MD_CTX *ctx) { CHECK(SHA3_Init(ctx->md_data, SHA3_256_DIGEST_BITLENGTH)); } static int sha3_256_update(EVP_MD_CTX *ctx, const void *data, size_t count) { // SHA3_Update returns 1 on success and 0 on failure. return SHA3_Update(ctx->md_data, data, count); } static void sha3_256_final(EVP_MD_CTX *ctx, uint8_t *md) { CHECK(SHA3_Final(md, ctx->md_data)); } DEFINE_METHOD_FUNCTION(EVP_MD, EVP_sha3_256) { out->type = NID_sha3_256; out->md_size = SHA3_256_DIGEST_LENGTH; out->flags = 0; out->init = sha3_256_init; out->update = sha3_256_update; out->final = sha3_256_final; out->squeezeXOF = NULL; out->finalXOF = NULL; out->block_size = SHA3_BLOCKSIZE(SHA3_256_DIGEST_BITLENGTH); out->ctx_size = sizeof(KECCAK1600_CTX); } static void sha3_384_init(EVP_MD_CTX *ctx) { CHECK(SHA3_Init(ctx->md_data, SHA3_384_DIGEST_BITLENGTH)); } static int sha3_384_update(EVP_MD_CTX *ctx, const void *data, size_t count) { // SHA3_Update returns 1 on success and 0 on failure. return SHA3_Update(ctx->md_data, data, count); } static void sha3_384_final(EVP_MD_CTX *ctx, uint8_t *md) { CHECK(SHA3_Final(md, ctx->md_data)); } DEFINE_METHOD_FUNCTION(EVP_MD, EVP_sha3_384) { out->type = NID_sha3_384; out->md_size = SHA3_384_DIGEST_LENGTH; out->flags = 0; out->init = sha3_384_init; out->update = sha3_384_update; out->final = sha3_384_final; out->squeezeXOF = NULL; out->finalXOF = NULL; out->block_size = SHA3_BLOCKSIZE(SHA3_384_DIGEST_BITLENGTH); out->ctx_size = sizeof(KECCAK1600_CTX); } static void sha3_512_init(EVP_MD_CTX *ctx) { CHECK(SHA3_Init(ctx->md_data, SHA3_512_DIGEST_BITLENGTH)); } static int sha3_512_update(EVP_MD_CTX *ctx, const void *data, size_t count) { // SHA3_Update returns 1 on success and 0 on failure. return SHA3_Update(ctx->md_data, data, count); } static void sha3_512_final(EVP_MD_CTX *ctx, uint8_t *md) { CHECK(SHA3_Final(md, ctx->md_data)); } DEFINE_METHOD_FUNCTION(EVP_MD, EVP_sha3_512) { out->type = NID_sha3_512; out->md_size = SHA3_512_DIGEST_LENGTH; out->flags = 0; out->init = sha3_512_init; out->update = sha3_512_update; out->final = sha3_512_final; out->squeezeXOF = NULL; out->finalXOF = NULL; out->block_size = SHA3_BLOCKSIZE(SHA3_512_DIGEST_BITLENGTH); out->ctx_size = sizeof(KECCAK1600_CTX); } static void shake128_init(EVP_MD_CTX *ctx) { CHECK(SHAKE_Init(ctx->md_data, SHAKE128_BLOCKSIZE)); } // shake128_update returns 1 on success and 0 on failure, returned // from |SHAKE_Absorb|, to restrict update calls after |squeezeXOF|. static int shake128_update(EVP_MD_CTX *ctx, const void *data, size_t count) { return SHAKE_Absorb(ctx->md_data, data, count); } // shake128_final returns 1 on success and 0 on failure, // returned from |SHAKE_Final|, to restrict single-call SHAKE_Final // calls after |squeezeXOF|. static int shake128_final(EVP_MD_CTX *ctx, uint8_t *md, size_t len) { return SHAKE_Final(md, ctx->md_data, len); } static void shake128_squeeze(EVP_MD_CTX *ctx, uint8_t *md, size_t len) { CHECK(SHAKE_Squeeze(md, ctx->md_data, len)); } DEFINE_METHOD_FUNCTION(EVP_MD, EVP_shake128) { out->type = NID_shake128; out->md_size = 0; out->flags = EVP_MD_FLAG_XOF; out->init = shake128_init; out->update = shake128_update; out->final = NULL; out->squeezeXOF = shake128_squeeze; out->finalXOF = shake128_final; out->block_size = SHAKE128_BLOCKSIZE; out->ctx_size = sizeof(KECCAK1600_CTX); } static void shake256_init(EVP_MD_CTX *ctx) { CHECK(SHAKE_Init(ctx->md_data, SHAKE256_BLOCKSIZE)); } // shake256_update returns 1 on success and 0 on failure, returned // from |SHAKE_Absorb|, to restrict update calls after |squeezeXOF|. static int shake256_update(EVP_MD_CTX *ctx, const void *data, size_t count) { return SHAKE_Absorb(ctx->md_data, data, count); } // shake256_final returns 1 on success and 0 on failure, // returned from |SHAKE_Final|, to restrict single-call SHAKE_Final // calls after |squeezeXOF|. static int shake256_final(EVP_MD_CTX *ctx, uint8_t *md, size_t len) { return SHAKE_Final(md, ctx->md_data, len); } static void shake256_squeeze(EVP_MD_CTX *ctx, uint8_t *md, size_t len) { CHECK(SHAKE_Squeeze(md, ctx->md_data, len)); } DEFINE_METHOD_FUNCTION(EVP_MD, EVP_shake256) { out->type = NID_shake256; out->md_size = 0; out->flags = EVP_MD_FLAG_XOF; out->init = shake256_init; out->update = shake256_update; out->final = NULL; out->squeezeXOF = shake256_squeeze; out->finalXOF = shake256_final; out->block_size = SHAKE256_BLOCKSIZE; out->ctx_size = sizeof(KECCAK1600_CTX); } typedef struct { MD5_CTX md5; SHA_CTX sha1; } MD5_SHA1_CTX; static void md5_sha1_init(EVP_MD_CTX *md_ctx) { MD5_SHA1_CTX *ctx = md_ctx->md_data; CHECK(MD5_Init(&ctx->md5) && SHA1_Init(&ctx->sha1)); } static int md5_sha1_update(EVP_MD_CTX *md_ctx, const void *data, size_t count) { MD5_SHA1_CTX *ctx = md_ctx->md_data; // MD5_Update and SHA1_Update always return 1. Internally called function // |crypto_md32_update| always returns 1. For test consistency // and future compatibility, the return value is propagated and returned int ok = MD5_Update(&ctx->md5, data, count) && SHA1_Update(&ctx->sha1, data, count); return ok; } static void md5_sha1_final(EVP_MD_CTX *md_ctx, uint8_t *out) { MD5_SHA1_CTX *ctx = md_ctx->md_data; CHECK(MD5_Final(out, &ctx->md5) && SHA1_Final(out + MD5_DIGEST_LENGTH, &ctx->sha1)); } DEFINE_METHOD_FUNCTION(EVP_MD, EVP_md5_sha1) { out->type = NID_md5_sha1; out->md_size = MD5_DIGEST_LENGTH + SHA_DIGEST_LENGTH; out->flags = 0; out->init = md5_sha1_init; out->update = md5_sha1_update; out->final = md5_sha1_final; out->squeezeXOF = NULL; out->finalXOF = NULL; out->block_size = 64; out->ctx_size = sizeof(MD5_SHA1_CTX); } #undef CHECK