crypto/fipsmodule/evp/p_rsa.c (727 lines of code) (raw):
/* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
* project 2006.
*/
/* ====================================================================
* Copyright (c) 2006 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* licensing@OpenSSL.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com). */
#include <openssl/evp.h>
#include <limits.h>
#include <openssl/bn.h>
#include <openssl/bytestring.h>
#include <openssl/digest.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include <openssl/nid.h>
#include <openssl/rsa.h>
#include "internal.h"
#include "../rsa/internal.h"
#include "../../rsa_extra/internal.h"
#define NO_PSS_SALT_LEN_RESTRICTION -1
typedef struct {
// Key gen parameters
int nbits;
BIGNUM *pub_exp;
// RSA padding mode
int pad_mode;
// message digest
const EVP_MD *md;
// message digest for MGF1
const EVP_MD *mgf1md;
// PSS salt length
int saltlen;
// Minimum salt length or NO_PSS_SALT_LEN_RESTRICTION.
int min_saltlen;
// tbuf is a buffer which is either NULL, or is the size of the RSA modulus.
// It's used to store the output of RSA operations.
uint8_t *tbuf;
// OAEP label
uint8_t *oaep_label;
size_t oaep_labellen;
} RSA_PKEY_CTX;
typedef struct {
uint8_t *data;
size_t len;
} RSA_OAEP_LABEL_PARAMS;
static int pkey_ctx_is_pss(EVP_PKEY_CTX *ctx) {
return ctx->pmeth->pkey_id == EVP_PKEY_RSA_PSS;
}
// This method checks if the NID of |s_md| is the same as the NID of |k_md| when
// |pkey_ctx_is_pss(ctx)| is true and there is PSS restriction, which means
// |min_saltlen| != |NO_PSS_SALT_LEN_RESTRICTION|.
static int pss_hash_algorithm_match(EVP_PKEY_CTX *ctx, int min_saltlen,
const EVP_MD *k_md, const EVP_MD *s_md) {
if (pkey_ctx_is_pss(ctx) && min_saltlen != NO_PSS_SALT_LEN_RESTRICTION) {
if (k_md != NULL && s_md != NULL) {
return EVP_MD_type(k_md) == EVP_MD_type(s_md);
} else {
return 0;
}
}
return 1;
}
// Set PSS parameters when generating a key, if necessary.
static int rsa_set_pss_param(RSA *rsa, EVP_PKEY_CTX *ctx) {
if (!pkey_ctx_is_pss(ctx)) {
return 1;
}
RSA_PKEY_CTX *rctx = ctx->data;
return RSASSA_PSS_PARAMS_create(rctx->md, rctx->mgf1md, rctx->saltlen, &(rsa->pss));
}
// Called for PSS sign or verify initialisation: checks PSS parameter
// sanity and sets any restrictions on key usage.
static int pkey_pss_init(EVP_PKEY_CTX *ctx) {
RSA *rsa;
RSA_PKEY_CTX *rctx = ctx->data;
const EVP_MD *md = NULL;
const EVP_MD *mgf1md = NULL;
int min_saltlen, max_saltlen;
// Should never happen.
if (!pkey_ctx_is_pss(ctx)) {
return 0;
}
if (ctx->pkey == NULL) {
return 0;
}
rsa = ctx->pkey->pkey.rsa;
// If no restrictions just return.
if (rsa->pss == NULL) {
return 1;
}
// Get and check parameters.
if (!RSASSA_PSS_PARAMS_get(rsa->pss, &md, &mgf1md, &min_saltlen)) {
return 0;
}
// See if minimum salt length exceeds maximum possible.
// 8.1.1. Step1 https://tools.ietf.org/html/rfc8017#section-8.1.1
// 9.1.1. Step3 https://tools.ietf.org/html/rfc8017#section-9.1.1
max_saltlen = RSA_size(rsa) - EVP_MD_size(md) - 2;
if ((RSA_bits(rsa) & 0x7) == 1) {
max_saltlen--;
}
if (min_saltlen > max_saltlen) {
OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PSS_SALT_LEN);
return 0;
}
// Set PSS restrictions as defaults: we can then block any attempt to
// use invalid values in pkey_rsa_ctrl
rctx->md = md;
rctx->mgf1md = mgf1md;
rctx->saltlen = min_saltlen;
rctx->min_saltlen = min_saltlen;
return 1;
}
// |pkey_pss_init| was assigned to both the sign and verify operations
// of the |EVP_PKEY_RSA_PSS| methods. This created an unwanted assembler
// optimization for the gcc-8 FIPS static release build on Ubuntu x86_64.
// The gcc-8 assembler will attempt to optimize function pointers used in
// multiple places under a ".data.rel.ro.local" section, but "delocate.go"
// does not have the ability to handle ".data" sections. Splitting
// |pkey_pss_init| into two functions: |pkey_pss_init_sign| and
// |pkey_pss_init_verify|, gets around this undesired behaviour.
static int pkey_pss_init_sign(EVP_PKEY_CTX *ctx) {
return pkey_pss_init(ctx);
}
static int pkey_pss_init_verify(EVP_PKEY_CTX *ctx) {
return pkey_pss_init(ctx);
}
static int pkey_rsa_init(EVP_PKEY_CTX *ctx) {
RSA_PKEY_CTX *rctx;
rctx = OPENSSL_zalloc(sizeof(RSA_PKEY_CTX));
if (!rctx) {
return 0;
}
rctx->nbits = 2048;
if (pkey_ctx_is_pss(ctx)) {
rctx->pad_mode = RSA_PKCS1_PSS_PADDING;
} else {
rctx->pad_mode = RSA_PKCS1_PADDING;
}
rctx->saltlen = -2;
rctx->min_saltlen = NO_PSS_SALT_LEN_RESTRICTION;
ctx->data = rctx;
return 1;
}
static int pkey_rsa_copy(EVP_PKEY_CTX *dst, EVP_PKEY_CTX *src) {
RSA_PKEY_CTX *dctx, *sctx;
if (!pkey_rsa_init(dst)) {
return 0;
}
sctx = src->data;
dctx = dst->data;
dctx->nbits = sctx->nbits;
if (sctx->pub_exp) {
dctx->pub_exp = BN_dup(sctx->pub_exp);
if (!dctx->pub_exp) {
return 0;
}
}
dctx->pad_mode = sctx->pad_mode;
dctx->md = sctx->md;
dctx->mgf1md = sctx->mgf1md;
dctx->saltlen = sctx->saltlen;
if (sctx->oaep_label) {
OPENSSL_free(dctx->oaep_label);
dctx->oaep_label = OPENSSL_memdup(sctx->oaep_label, sctx->oaep_labellen);
if (!dctx->oaep_label) {
return 0;
}
dctx->oaep_labellen = sctx->oaep_labellen;
}
return 1;
}
static void pkey_rsa_cleanup(EVP_PKEY_CTX *ctx) {
RSA_PKEY_CTX *rctx = ctx->data;
if (rctx == NULL) {
return;
}
BN_free(rctx->pub_exp);
OPENSSL_free(rctx->tbuf);
OPENSSL_free(rctx->oaep_label);
OPENSSL_free(rctx);
}
static int setup_tbuf(RSA_PKEY_CTX *ctx, EVP_PKEY_CTX *pk) {
if (ctx->tbuf) {
return 1;
}
ctx->tbuf = OPENSSL_malloc(EVP_PKEY_size(pk->pkey));
if (!ctx->tbuf) {
return 0;
}
return 1;
}
static int pkey_rsa_sign(EVP_PKEY_CTX *ctx, uint8_t *sig, size_t *siglen,
const uint8_t *tbs, size_t tbslen) {
RSA_PKEY_CTX *rctx = ctx->data;
RSA *rsa = ctx->pkey->pkey.rsa;
const size_t key_len = EVP_PKEY_size(ctx->pkey);
if (!sig) {
*siglen = key_len;
return 1;
}
if (*siglen < key_len) {
OPENSSL_PUT_ERROR(EVP, EVP_R_BUFFER_TOO_SMALL);
return 0;
}
if (rctx->md) {
unsigned out_len;
switch (rctx->pad_mode) {
case RSA_PKCS1_PADDING:
if (!RSA_sign(EVP_MD_type(rctx->md), tbs, tbslen, sig, &out_len, rsa)) {
return 0;
}
*siglen = out_len;
return 1;
case RSA_PKCS1_PSS_PADDING:
return RSA_sign_pss_mgf1(rsa, siglen, sig, *siglen, tbs, tbslen,
rctx->md, rctx->mgf1md, rctx->saltlen);
default:
return 0;
}
}
return RSA_sign_raw(rsa, siglen, sig, *siglen, tbs, tbslen, rctx->pad_mode);
}
static int pkey_rsa_verify(EVP_PKEY_CTX *ctx, const uint8_t *sig,
size_t siglen, const uint8_t *tbs,
size_t tbslen) {
RSA_PKEY_CTX *rctx = ctx->data;
RSA *rsa = ctx->pkey->pkey.rsa;
if (rctx->md) {
switch (rctx->pad_mode) {
case RSA_PKCS1_PADDING:
return RSA_verify(EVP_MD_type(rctx->md), tbs, tbslen, sig, siglen, rsa);
case RSA_PKCS1_PSS_PADDING:
return RSA_verify_pss_mgf1(rsa, tbs, tbslen, rctx->md, rctx->mgf1md,
rctx->saltlen, sig, siglen);
default:
return 0;
}
}
size_t rslen;
const size_t key_len = EVP_PKEY_size(ctx->pkey);
if (!setup_tbuf(rctx, ctx) ||
!RSA_verify_raw(rsa, &rslen, rctx->tbuf, key_len, sig, siglen,
rctx->pad_mode) ||
rslen != tbslen ||
CRYPTO_memcmp(tbs, rctx->tbuf, rslen) != 0) {
return 0;
}
return 1;
}
static int pkey_rsa_verify_recover(EVP_PKEY_CTX *ctx, uint8_t *out,
size_t *out_len, const uint8_t *sig,
size_t sig_len) {
RSA_PKEY_CTX *rctx = ctx->data;
RSA *rsa = ctx->pkey->pkey.rsa;
const size_t key_len = EVP_PKEY_size(ctx->pkey);
if (out == NULL) {
*out_len = key_len;
return 1;
}
if (*out_len < key_len) {
OPENSSL_PUT_ERROR(EVP, EVP_R_BUFFER_TOO_SMALL);
return 0;
}
if (rctx->md == NULL) {
return RSA_verify_raw(rsa, out_len, out, *out_len, sig, sig_len,
rctx->pad_mode);
}
if (rctx->pad_mode != RSA_PKCS1_PADDING) {
return 0;
}
// Assemble the encoded hash, using a placeholder hash value.
static const uint8_t kDummyHash[EVP_MAX_MD_SIZE] = {0};
const size_t hash_len = EVP_MD_size(rctx->md);
uint8_t *asn1_prefix;
size_t asn1_prefix_len;
int asn1_prefix_allocated;
if (!setup_tbuf(rctx, ctx) ||
!RSA_add_pkcs1_prefix(&asn1_prefix, &asn1_prefix_len,
&asn1_prefix_allocated, EVP_MD_type(rctx->md),
kDummyHash, hash_len)) {
return 0;
}
size_t rslen;
int ok = 1;
if (!RSA_verify_raw(rsa, &rslen, rctx->tbuf, key_len, sig, sig_len,
RSA_PKCS1_PADDING) ||
rslen != asn1_prefix_len ||
// Compare all but the hash suffix.
CRYPTO_memcmp(rctx->tbuf, asn1_prefix, asn1_prefix_len - hash_len) != 0) {
ok = 0;
}
if (asn1_prefix_allocated) {
OPENSSL_free(asn1_prefix);
}
if (!ok) {
return 0;
}
if (out != NULL) {
OPENSSL_memcpy(out, rctx->tbuf + rslen - hash_len, hash_len);
}
*out_len = hash_len;
return 1;
}
static int pkey_rsa_encrypt(EVP_PKEY_CTX *ctx, uint8_t *out, size_t *outlen,
const uint8_t *in, size_t inlen) {
RSA_PKEY_CTX *rctx = ctx->data;
RSA *rsa = ctx->pkey->pkey.rsa;
const size_t key_len = EVP_PKEY_size(ctx->pkey);
if (!out) {
*outlen = key_len;
return 1;
}
if (*outlen < key_len) {
OPENSSL_PUT_ERROR(EVP, EVP_R_BUFFER_TOO_SMALL);
return 0;
}
if (rctx->pad_mode == RSA_PKCS1_OAEP_PADDING) {
if (!setup_tbuf(rctx, ctx) ||
!RSA_padding_add_PKCS1_OAEP_mgf1(rctx->tbuf, key_len, in, inlen,
rctx->oaep_label, rctx->oaep_labellen,
rctx->md, rctx->mgf1md) ||
!RSA_encrypt(rsa, outlen, out, *outlen, rctx->tbuf, key_len,
RSA_NO_PADDING)) {
return 0;
}
return 1;
}
return RSA_encrypt(rsa, outlen, out, *outlen, in, inlen, rctx->pad_mode);
}
static int pkey_rsa_decrypt(EVP_PKEY_CTX *ctx, uint8_t *out,
size_t *outlen, const uint8_t *in,
size_t inlen) {
RSA_PKEY_CTX *rctx = ctx->data;
RSA *rsa = ctx->pkey->pkey.rsa;
const size_t key_len = EVP_PKEY_size(ctx->pkey);
if (!out) {
*outlen = key_len;
return 1;
}
if (*outlen < key_len) {
OPENSSL_PUT_ERROR(EVP, EVP_R_BUFFER_TOO_SMALL);
return 0;
}
if (rctx->pad_mode == RSA_PKCS1_OAEP_PADDING) {
size_t padded_len;
if (!setup_tbuf(rctx, ctx) ||
!RSA_decrypt(rsa, &padded_len, rctx->tbuf, key_len, in, inlen,
RSA_NO_PADDING) ||
!RSA_padding_check_PKCS1_OAEP_mgf1(
out, outlen, key_len, rctx->tbuf, padded_len, rctx->oaep_label,
rctx->oaep_labellen, rctx->md, rctx->mgf1md)) {
return 0;
}
return 1;
}
return RSA_decrypt(rsa, outlen, out, key_len, in, inlen, rctx->pad_mode);
}
static int check_padding_md(const EVP_MD *md, int padding) {
if (!md) {
return 1;
}
if (padding == RSA_NO_PADDING) {
OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PADDING_MODE);
return 0;
}
return 1;
}
static int is_known_padding(int padding_mode) {
switch (padding_mode) {
case RSA_PKCS1_PADDING:
case RSA_NO_PADDING:
case RSA_PKCS1_OAEP_PADDING:
case RSA_PKCS1_PSS_PADDING:
return 1;
default:
return 0;
}
}
static int pkey_rsa_ctrl(EVP_PKEY_CTX *ctx, int type, int p1, void *p2) {
RSA_PKEY_CTX *rctx = ctx->data;
switch (type) {
case EVP_PKEY_CTRL_RSA_PADDING:
if (!is_known_padding(p1) || !check_padding_md(rctx->md, p1) ||
(p1 == RSA_PKCS1_PSS_PADDING &&
0 == (ctx->operation & (EVP_PKEY_OP_SIGN | EVP_PKEY_OP_VERIFY))) ||
(p1 == RSA_PKCS1_OAEP_PADDING &&
0 == (ctx->operation & EVP_PKEY_OP_TYPE_CRYPT))) {
OPENSSL_PUT_ERROR(EVP, EVP_R_ILLEGAL_OR_UNSUPPORTED_PADDING_MODE);
return 0;
}
if (p1 != RSA_PKCS1_PSS_PADDING && pkey_ctx_is_pss(ctx)) {
OPENSSL_PUT_ERROR(EVP, EVP_R_ILLEGAL_OR_UNSUPPORTED_PADDING_MODE);
return 0;
}
if ((p1 == RSA_PKCS1_PSS_PADDING || p1 == RSA_PKCS1_OAEP_PADDING) &&
rctx->md == NULL) {
rctx->md = EVP_sha1();
}
rctx->pad_mode = p1;
return 1;
case EVP_PKEY_CTRL_GET_RSA_PADDING:
*(int *)p2 = rctx->pad_mode;
return 1;
case EVP_PKEY_CTRL_RSA_PSS_SALTLEN:
case EVP_PKEY_CTRL_GET_RSA_PSS_SALTLEN:
if (rctx->pad_mode != RSA_PKCS1_PSS_PADDING) {
OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PSS_SALTLEN);
return 0;
}
if (type == EVP_PKEY_CTRL_GET_RSA_PSS_SALTLEN) {
*(int *)p2 = rctx->saltlen;
} else {
// |p1| can be |-2|, |-1| and non-negative.
// The functions of these values are mentioned in the API doc of
// |EVP_PKEY_CTX_set_rsa_pss_saltlen| in |evp.h|.
// Accordingly, |-2| is the smallest value that |p1| can be.
if (p1 < -2) {
return 0;
}
int min_saltlen = rctx->min_saltlen;
if (min_saltlen != NO_PSS_SALT_LEN_RESTRICTION) {
// Check |min_saltlen| when |p1| is -1.
if ((p1 == RSA_PSS_SALTLEN_DIGEST &&
(size_t)min_saltlen > EVP_MD_size(rctx->md)) ||
// Check |min_saltlen| when |p1| is the value gives the size of
// the salt in bytes.
(p1 >= 0 && p1 < min_saltlen)) {
OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PSS_SALTLEN);
return 0;
}
}
rctx->saltlen = p1;
}
return 1;
case EVP_PKEY_CTRL_RSA_KEYGEN_BITS:
if (p1 < 256) {
OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_KEYBITS);
return 0;
}
rctx->nbits = p1;
return 1;
case EVP_PKEY_CTRL_RSA_KEYGEN_PUBEXP:
if (!p2) {
return 0;
}
#if defined(AWSLC_FIPS)
if (BN_get_word(p2) != RSA_F4) {
OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_OPERATION);
return 0;
}
#endif
BN_free(rctx->pub_exp);
rctx->pub_exp = p2;
return 1;
case EVP_PKEY_CTRL_RSA_OAEP_MD:
case EVP_PKEY_CTRL_GET_RSA_OAEP_MD:
if (rctx->pad_mode != RSA_PKCS1_OAEP_PADDING) {
OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PADDING_MODE);
return 0;
}
if (type == EVP_PKEY_CTRL_GET_RSA_OAEP_MD) {
*(const EVP_MD **)p2 = rctx->md;
} else {
rctx->md = p2;
}
return 1;
case EVP_PKEY_CTRL_MD:
if (!check_padding_md(p2, rctx->pad_mode)) {
return 0;
}
// Check if the hashAlgorithm is matched.
// Sec 3.3 https://tools.ietf.org/html/rfc4055#section-3.3
if (!pss_hash_algorithm_match(ctx, rctx->min_saltlen, rctx->md, p2)) {
OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PSS_MD);
return 0;
}
rctx->md = p2;
return 1;
case EVP_PKEY_CTRL_GET_MD:
*(const EVP_MD **)p2 = rctx->md;
return 1;
case EVP_PKEY_CTRL_RSA_MGF1_MD:
case EVP_PKEY_CTRL_GET_RSA_MGF1_MD:
if (rctx->pad_mode != RSA_PKCS1_PSS_PADDING &&
rctx->pad_mode != RSA_PKCS1_OAEP_PADDING) {
OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_MGF1_MD);
return 0;
}
if (type == EVP_PKEY_CTRL_GET_RSA_MGF1_MD) {
if (rctx->mgf1md) {
*(const EVP_MD **)p2 = rctx->mgf1md;
} else {
*(const EVP_MD **)p2 = rctx->md;
}
} else {
// Check if the hashAlgorithm is matched.
// Sec 3.3 https://tools.ietf.org/html/rfc4055#section-3.3
if (!pss_hash_algorithm_match(ctx, rctx->min_saltlen, rctx->mgf1md, p2)) {
OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_MGF1_MD);
return 0;
}
rctx->mgf1md = p2;
}
return 1;
case EVP_PKEY_CTRL_RSA_OAEP_LABEL: {
if (rctx->pad_mode != RSA_PKCS1_OAEP_PADDING) {
OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PADDING_MODE);
return 0;
}
OPENSSL_free(rctx->oaep_label);
RSA_OAEP_LABEL_PARAMS *params = p2;
rctx->oaep_label = params->data;
rctx->oaep_labellen = params->len;
return 1;
}
case EVP_PKEY_CTRL_GET_RSA_OAEP_LABEL:
if (rctx->pad_mode != RSA_PKCS1_OAEP_PADDING) {
OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PADDING_MODE);
return 0;
}
CBS_init((CBS *)p2, rctx->oaep_label, rctx->oaep_labellen);
return 1;
default:
OPENSSL_PUT_ERROR(EVP, EVP_R_COMMAND_NOT_SUPPORTED);
return 0;
}
}
static int pkey_rsa_keygen(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey) {
int ret = 0;
RSA *rsa = NULL;
RSA_PKEY_CTX *rctx = ctx->data;
BN_GENCB *pkey_ctx_cb = NULL;
// In FIPS mode, the public exponent is set within |RSA_generate_key_fips|
if (!is_fips_build() && !rctx->pub_exp) {
rctx->pub_exp = BN_new();
if (!rctx->pub_exp || !BN_set_word(rctx->pub_exp, RSA_F4)) {
goto end;
}
}
rsa = RSA_new();
if (!rsa) {
goto end;
}
if (ctx->pkey_gencb) {
pkey_ctx_cb = BN_GENCB_new();
if (pkey_ctx_cb == NULL) {
goto end;
}
evp_pkey_set_cb_translate(pkey_ctx_cb, ctx);
}
// In FIPS build, |RSA_generate_key_fips| updates the service indicator so lock it here
FIPS_service_indicator_lock_state();
if ((!is_fips_build() &&
!RSA_generate_key_ex(rsa, rctx->nbits, rctx->pub_exp, pkey_ctx_cb)) ||
(is_fips_build() &&
!RSA_generate_key_fips(rsa, rctx->nbits, pkey_ctx_cb)) ||
!rsa_set_pss_param(rsa, ctx)) {
FIPS_service_indicator_unlock_state();
goto end;
}
FIPS_service_indicator_unlock_state();
if (pkey_ctx_is_pss(ctx)) {
ret = EVP_PKEY_assign(pkey, EVP_PKEY_RSA_PSS, rsa);
} else {
ret = EVP_PKEY_assign_RSA(pkey, rsa);
}
end:
BN_GENCB_free(pkey_ctx_cb);
if (!ret && rsa) {
RSA_free(rsa);
}
return ret;
}
static int pkey_rsa_ctrl_str(EVP_PKEY_CTX *ctx, const char *type,
const char *value) {
if (value == NULL) {
OPENSSL_PUT_ERROR(EVP, RSA_R_VALUE_MISSING);
return 0;
}
if (strcmp(type, "rsa_padding_mode") == 0) {
// "sslv23" and "x931" are not supported
int pm;
if (strcmp(value, "pkcs1") == 0) {
pm = RSA_PKCS1_PADDING;
} else if (strcmp(value, "none") == 0) {
pm = RSA_NO_PADDING;
// OpenSSL also supports the typo.
} else if (strcmp(value, "oeap") == 0) {
pm = RSA_PKCS1_OAEP_PADDING;
} else if (strcmp(value, "oaep") == 0) {
pm = RSA_PKCS1_OAEP_PADDING;
} else if (strcmp(value, "pss") == 0) {
pm = RSA_PKCS1_PSS_PADDING;
} else {
OPENSSL_PUT_ERROR(EVP, RSA_R_UNKNOWN_PADDING_TYPE);
return -2;
}
return EVP_PKEY_CTX_set_rsa_padding(ctx, pm);
}
if (strcmp(type, "rsa_pss_saltlen") == 0) {
// "max" and "auto" are not supported
long saltlen;
if (!strcmp(value, "digest")) {
saltlen = RSA_PSS_SALTLEN_DIGEST;
} else {
char* str_end;
saltlen = strtol(value, &str_end, 10);
if(str_end == value || saltlen < 0 || saltlen > INT_MAX) {
OPENSSL_PUT_ERROR(EVP, RSA_R_INTERNAL_ERROR);
return -2;
}
}
return EVP_PKEY_CTX_set_rsa_pss_saltlen(ctx, (int)saltlen);
}
if (strcmp(type, "rsa_keygen_bits") == 0) {
char* str_end;
long nbits = strtol(value, &str_end, 10);
if (str_end == value || nbits <= 0 || nbits > INT_MAX) {
OPENSSL_PUT_ERROR(EVP, RSA_R_INTERNAL_ERROR);
return -2;
}
return EVP_PKEY_CTX_set_rsa_keygen_bits(ctx, (int)nbits);
}
if (strcmp(type, "rsa_keygen_pubexp") == 0) {
int ret;
BIGNUM *pubexp = NULL;
if (!BN_asc2bn(&pubexp, value)) {
return -2;
}
ret = EVP_PKEY_CTX_set_rsa_keygen_pubexp(ctx, pubexp);
if (ret <= 0) {
BN_free(pubexp);
}
return ret;
}
if (strcmp(type, "rsa_mgf1_md") == 0) {
OPENSSL_BEGIN_ALLOW_DEPRECATED
return EVP_PKEY_CTX_md(ctx, EVP_PKEY_OP_TYPE_SIG | EVP_PKEY_OP_TYPE_CRYPT,
EVP_PKEY_CTRL_RSA_MGF1_MD, value);
OPENSSL_END_ALLOW_DEPRECATED
}
// rsa_pss_keygen_XXX options are not supported
if (strcmp(type, "rsa_oaep_md") == 0) {
OPENSSL_BEGIN_ALLOW_DEPRECATED
return EVP_PKEY_CTX_md(ctx, EVP_PKEY_OP_TYPE_CRYPT,
EVP_PKEY_CTRL_RSA_OAEP_MD, value);
OPENSSL_END_ALLOW_DEPRECATED
}
if (strcmp(type, "rsa_oaep_label") == 0) {
size_t lablen = 0;
uint8_t *lab = OPENSSL_hexstr2buf(value, &lablen);
if (lab == NULL) {
return 0;
}
int ret = EVP_PKEY_CTX_set0_rsa_oaep_label(ctx, lab, lablen);
if (ret <= 0) {
OPENSSL_free(lab);
}
return ret;
}
return -2;
}
DEFINE_METHOD_FUNCTION(EVP_PKEY_METHOD, EVP_PKEY_rsa_pkey_meth) {
out->pkey_id = EVP_PKEY_RSA;
out->init = pkey_rsa_init;
out->copy = pkey_rsa_copy;
out->cleanup = pkey_rsa_cleanup;
out->keygen = pkey_rsa_keygen;
out->sign_init = NULL; /* sign_init */
out->sign = pkey_rsa_sign;
out->sign_message = NULL; /* sign_message */
out->verify_init = NULL; /* verify_init */
out->verify = pkey_rsa_verify;
out->verify_message = NULL; /* verify_message */
out->verify_recover = pkey_rsa_verify_recover; /* verify_recover */
out->encrypt = pkey_rsa_encrypt; /* encrypt */
out->decrypt = pkey_rsa_decrypt; /* decrypt */
out->derive = NULL;
out->paramgen = NULL;
out->ctrl = pkey_rsa_ctrl;
out->ctrl_str = pkey_rsa_ctrl_str;
}
DEFINE_METHOD_FUNCTION(EVP_PKEY_METHOD, EVP_PKEY_rsa_pss_pkey_meth) {
out->pkey_id = EVP_PKEY_RSA_PSS;
out->init = pkey_rsa_init;
out->copy = pkey_rsa_copy;
out->cleanup = pkey_rsa_cleanup;
out->keygen = pkey_rsa_keygen;
out->sign_init = pkey_pss_init_sign; /* sign_init */
out->sign = pkey_rsa_sign;
out->sign_message = NULL; /* sign_message */
out->verify_init = pkey_pss_init_verify; /* verify_init */
out->verify = pkey_rsa_verify;
out->verify_message = NULL; /* verify_message */
out->verify_recover = NULL; /* verify_recover */
out->encrypt = NULL; /* encrypt */
out->decrypt = NULL; /* decrypt */
out->derive = NULL;
out->paramgen = NULL;
out->ctrl = pkey_rsa_ctrl;
out->ctrl_str = pkey_rsa_ctrl_str;
}
int EVP_RSA_PKEY_CTX_ctrl(EVP_PKEY_CTX *ctx, int optype, int cmd, int p1, void *p2) {
/* If key type is not RSA or RSA-PSS return error */
if ((ctx != NULL) && (ctx->pmeth != NULL)
&& (ctx->pmeth->pkey_id != EVP_PKEY_RSA)
&& (ctx->pmeth->pkey_id != EVP_PKEY_RSA_PSS)) {
OPENSSL_PUT_ERROR(EVP, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE);
return 0;
}
return EVP_PKEY_CTX_ctrl(ctx, -1, optype, cmd, p1, p2);
}
int EVP_PKEY_CTX_set_rsa_padding(EVP_PKEY_CTX *ctx, int padding) {
return EVP_RSA_PKEY_CTX_ctrl(ctx, -1, EVP_PKEY_CTRL_RSA_PADDING, padding, NULL);
}
int EVP_PKEY_CTX_get_rsa_padding(EVP_PKEY_CTX *ctx, int *out_padding) {
return EVP_RSA_PKEY_CTX_ctrl(ctx, -1, EVP_PKEY_CTRL_GET_RSA_PADDING, 0, out_padding);
}
int EVP_PKEY_CTX_set_rsa_pss_keygen_md(EVP_PKEY_CTX *ctx, const EVP_MD *md) {
return 0;
}
int EVP_PKEY_CTX_set_rsa_pss_keygen_saltlen(EVP_PKEY_CTX *ctx, int salt_len) {
return 0;
}
int EVP_PKEY_CTX_set_rsa_pss_keygen_mgf1_md(EVP_PKEY_CTX *ctx,
const EVP_MD *md) {
return 0;
}
int EVP_PKEY_CTX_set_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int salt_len) {
return EVP_RSA_PKEY_CTX_ctrl(ctx,
(EVP_PKEY_OP_SIGN | EVP_PKEY_OP_VERIFY),
EVP_PKEY_CTRL_RSA_PSS_SALTLEN, salt_len, NULL);
}
int EVP_PKEY_CTX_get_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int *out_salt_len) {
return EVP_RSA_PKEY_CTX_ctrl(ctx,
(EVP_PKEY_OP_SIGN | EVP_PKEY_OP_VERIFY),
EVP_PKEY_CTRL_GET_RSA_PSS_SALTLEN, 0, out_salt_len);
}
int EVP_PKEY_CTX_set_rsa_keygen_bits(EVP_PKEY_CTX *ctx, int bits) {
return EVP_RSA_PKEY_CTX_ctrl(ctx, EVP_PKEY_OP_KEYGEN,
EVP_PKEY_CTRL_RSA_KEYGEN_BITS, bits, NULL);
}
int EVP_PKEY_CTX_set_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *e) {
return EVP_RSA_PKEY_CTX_ctrl(ctx, EVP_PKEY_OP_KEYGEN,
EVP_PKEY_CTRL_RSA_KEYGEN_PUBEXP, 0, e);
}
int EVP_PKEY_CTX_set_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD *md) {
return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
EVP_PKEY_CTRL_RSA_OAEP_MD, 0, (void *)md);
}
int EVP_PKEY_CTX_get_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD **out_md) {
return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
EVP_PKEY_CTRL_GET_RSA_OAEP_MD, 0, (void*) out_md);
}
int EVP_PKEY_CTX_set_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD *md) {
return EVP_RSA_PKEY_CTX_ctrl(ctx,
EVP_PKEY_OP_TYPE_SIG | EVP_PKEY_OP_TYPE_CRYPT,
EVP_PKEY_CTRL_RSA_MGF1_MD, 0, (void*) md);
}
int EVP_PKEY_CTX_get_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD **out_md) {
return EVP_RSA_PKEY_CTX_ctrl(ctx,
EVP_PKEY_OP_TYPE_SIG | EVP_PKEY_OP_TYPE_CRYPT,
EVP_PKEY_CTRL_GET_RSA_MGF1_MD, 0, (void*) out_md);
}
int EVP_PKEY_CTX_set0_rsa_oaep_label(EVP_PKEY_CTX *ctx, uint8_t *label,
size_t label_len) {
RSA_OAEP_LABEL_PARAMS params = {label, label_len};
return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
EVP_PKEY_CTRL_RSA_OAEP_LABEL, 0, ¶ms);
}
int EVP_PKEY_CTX_get0_rsa_oaep_label(EVP_PKEY_CTX *ctx,
const uint8_t **out_label) {
CBS label;
if (!EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
EVP_PKEY_CTRL_GET_RSA_OAEP_LABEL, 0, &label)) {
return -1;
}
if (CBS_len(&label) > INT_MAX) {
OPENSSL_PUT_ERROR(EVP, ERR_R_OVERFLOW);
return -1;
}
*out_label = CBS_data(&label);
return (int)CBS_len(&label);
}