crypto/fipsmodule/ml_dsa/ml_dsa_ref/poly.c (508 lines of code) (raw):
#include <stdint.h>
#include "params.h"
#include "poly.h"
#include "ntt.h"
#include "reduce.h"
#include "rounding.h"
#include "../../sha/internal.h"
/*************************************************
* Name: ml_dsa_poly_reduce
*
* Description: Inplace reduction of all coefficients of polynomial to
* representative in [-6283009,6283007].
*
* Arguments: - poly *a: pointer to input/output polynomial
**************************************************/
void ml_dsa_poly_reduce(ml_dsa_poly *a) {
unsigned int i;
for(i = 0; i < ML_DSA_N; ++i) {
a->coeffs[i] = ml_dsa_reduce32(a->coeffs[i]);
}
}
/*************************************************
* Name: ml_dsa_poly_caddq
*
* Description: For all coefficients of in/out polynomial add Q if
* coefficient is negative.
*
* Arguments: - poly *a: pointer to input/output polynomial
**************************************************/
void ml_dsa_poly_caddq(ml_dsa_poly *a) {
unsigned int i;
for(i = 0; i < ML_DSA_N; ++i) {
a->coeffs[i] = ml_dsa_caddq(a->coeffs[i]);
}
}
/*************************************************
* Name: ml_dsa_poly_add
*
* Description: Add polynomials. No modular reduction is performed.
*
* Arguments: - poly *c: pointer to output polynomial
* - const poly *a: pointer to first summand
* - const poly *b: pointer to second summand
**************************************************/
void ml_dsa_poly_add(ml_dsa_poly *c, const ml_dsa_poly *a, const ml_dsa_poly *b) {
unsigned int i;
for(i = 0; i < ML_DSA_N; ++i) {
c->coeffs[i] = a->coeffs[i] + b->coeffs[i];
}
}
/*************************************************
* Name: ml_dsa_poly_sub
*
* Description: Subtract polynomials. No modular reduction is
* performed.
*
* Arguments: - poly *c: pointer to output polynomial
* - const poly *a: pointer to first input polynomial
* - const poly *b: pointer to second input polynomial to be
* subtraced from first input polynomial
**************************************************/
void ml_dsa_poly_sub(ml_dsa_poly *c, const ml_dsa_poly *a, const ml_dsa_poly *b) {
unsigned int i;
for(i = 0; i < ML_DSA_N; ++i) {
c->coeffs[i] = a->coeffs[i] - b->coeffs[i];
}
}
/*************************************************
* Name: ml_dsa_poly_shiftl
*
* Description: Multiply polynomial by 2^D without modular reduction. Assumes
* input coefficients to be less than 2^{31-D} in absolute value.
*
* Arguments: - poly *a: pointer to input/output polynomial
**************************************************/
void ml_dsa_poly_shiftl(ml_dsa_poly *a) {
unsigned int i;
for(i = 0; i < ML_DSA_N; ++i) {
a->coeffs[i] <<= ML_DSA_D;
}
}
/*************************************************
* Name: ml_dsa_poly_ntt
*
* Description: Inplace forward NTT. Coefficients can grow by
* 8*Q in absolute value.
*
* Arguments: - poly *a: pointer to input/output polynomial
**************************************************/
void ml_dsa_poly_ntt(ml_dsa_poly *a) {
ml_dsa_ntt(a->coeffs);
}
/*************************************************
* Name: ml_dsa_poly_invntt_tomont
*
* Description: Inplace inverse NTT and multiplication by 2^{32}.
* Input coefficients need to be less than Q in absolute
* value and output coefficients are again bounded by Q.
*
* Arguments: - poly *a: pointer to input/output polynomial
**************************************************/
void ml_dsa_poly_invntt_tomont(ml_dsa_poly *a) {
ml_dsa_invntt_tomont(a->coeffs);
}
/*************************************************
* Name: ml_dsa_poly_pointwise_montgomery
*
* Description: Pointwise multiplication of polynomials in NTT domain
* representation and multiplication of resulting polynomial
* by 2^{-32}.
*
* Arguments: - poly *c: pointer to output polynomial
* - const poly *a: pointer to first input polynomial
* - const poly *b: pointer to second input polynomial
**************************************************/
void ml_dsa_poly_pointwise_montgomery(ml_dsa_poly *c,
const ml_dsa_poly *a,
const ml_dsa_poly *b) {
unsigned int i;
for(i = 0; i < ML_DSA_N; ++i) {
c->coeffs[i] = ml_dsa_fqmul(a->coeffs[i], b->coeffs[i]);
}
}
/*************************************************
* Name: ml_dsa_poly_power2round
*
* Description: For all coefficients c of the input polynomial,
* compute c0, c1 such that c mod Q = c1*2^D + c0
* with -2^{D-1} < c0 <= 2^{D-1}. Assumes coefficients to be
* standard representatives.
*
* Arguments: - poly *a1: pointer to output polynomial with coefficients c1
* - poly *a0: pointer to output polynomial with coefficients c0
* - const poly *a: pointer to input polynomial
**************************************************/
void ml_dsa_poly_power2round(ml_dsa_poly *a1, ml_dsa_poly *a0, const ml_dsa_poly *a) {
unsigned int i;
for(i = 0; i < ML_DSA_N; ++i) {
a1->coeffs[i] = ml_dsa_power2round(&a0->coeffs[i], a->coeffs[i]);
}
}
/*************************************************
* Name: ml_dsa_poly_decompose
*
* Description: For all coefficients c of the input polynomial,
* compute high and low bits c0, c1 such c mod Q = c1*ALPHA + c0
* with -ALPHA/2 < c0 <= ALPHA/2 except c1 = (Q-1)/ALPHA where we
* set c1 = 0 and -ALPHA/2 <= c0 = c mod Q - Q < 0.
* Assumes coefficients to be standard representatives.
*
* Arguments: - ml_dsa_params: parameter struct
* - poly *a1: pointer to output polynomial with coefficients c1
* - poly *a0: pointer to output polynomial with coefficients c0
* - const poly *a: pointer to input polynomial
**************************************************/
void ml_dsa_poly_decompose(ml_dsa_params *params,
ml_dsa_poly *a1,
ml_dsa_poly *a0,
const ml_dsa_poly *a) {
unsigned int i;
for(i = 0; i < ML_DSA_N; ++i) {
a1->coeffs[i] = ml_dsa_decompose(params, &a0->coeffs[i], a->coeffs[i]);
}
}
/*************************************************
* Name: ml_dsa_poly_make_hint
*
* Description: Compute hint polynomial. The coefficients of which indicate
* whether the low bits of the corresponding coefficient of
* the input polynomial overflow into the high bits.
*
* Arguments: - ml_dsa_params: parameter struct
* - poly *h: pointer to output hint polynomial
* - const poly *a0: pointer to low part of input polynomial
* - const poly *a1: pointer to high part of input polynomial
*
* Returns number of 1 bits.
**************************************************/
unsigned int ml_dsa_poly_make_hint(ml_dsa_params *params,
ml_dsa_poly *h,
const ml_dsa_poly *a0,
const ml_dsa_poly *a1) {
unsigned int i, s = 0;
for(i = 0; i < ML_DSA_N; ++i) {
h->coeffs[i] = ml_dsa_make_hint(params, a0->coeffs[i], a1->coeffs[i]);
s += h->coeffs[i];
}
return s;
}
/*************************************************
* Name: ml_dsa_poly_use_hint
*
* Description: Use hint polynomial to correct the high bits of a polynomial.
*
* Arguments: - ml_dsa_params: parameter struct
* - poly *b: pointer to output polynomial with corrected high bits
* - const poly *a: pointer to input polynomial
* - const poly *h: pointer to input hint polynomial
**************************************************/
void ml_dsa_poly_use_hint(ml_dsa_params *params,
ml_dsa_poly *b,
const ml_dsa_poly *a,
const ml_dsa_poly *h) {
unsigned int i;
for(i = 0; i < ML_DSA_N; ++i) {
b->coeffs[i] = ml_dsa_use_hint(params, a->coeffs[i], h->coeffs[i]);
}
}
/*************************************************
* Name: ml_dsa_poly_chknorm
*
* Description: Check infinity norm of polynomial against given bound.
* Assumes input coefficients were reduced by reduce32().
*
* Arguments: - const poly *a: pointer to polynomial
* - int32_t B: norm bound
*
* Returns 0 if norm is strictly smaller than B <= (Q-1)/8 and 1 otherwise.
**************************************************/
int ml_dsa_poly_chknorm(const ml_dsa_poly *a, int32_t B) {
unsigned int i;
int32_t t;
if(B > (ML_DSA_Q-1)/8) {
return 1;
}
/* It is ok to leak which coefficient violates the bound since
the probability for each coefficient is independent of secret
data but we must not leak the sign of the centralized representative. */
for(i = 0; i < ML_DSA_N; ++i) {
/* Absolute value */
t = a->coeffs[i] >> 31;
t = a->coeffs[i] - (t & 2*a->coeffs[i]);
if(t >= B) {
return 1;
}
}
return 0;
}
/*************************************************
* Name: ml_dsa_rej_uniform
*
* Description: Sample uniformly random coefficients in [0, Q-1] by
* performing rejection sampling on array of random bytes.
*
* Arguments: - int32_t *a: pointer to output array (allocated)
* - unsigned int len: number of coefficients to be sampled
* - const uint8_t *buf: array of random bytes
* - unsigned int buflen: length of array of random bytes
*
* Returns number of sampled coefficients. Can be smaller than len if not enough
* random bytes were given.
**************************************************/
static unsigned int ml_dsa_rej_uniform(int32_t *a,
unsigned int len,
const uint8_t *buf,
unsigned int buflen)
{
unsigned int ctr, pos;
uint32_t t;
ctr = pos = 0;
while(ctr < len && pos + 3 <= buflen) {
t = buf[pos++];
t |= (uint32_t)buf[pos++] << 8;
t |= (uint32_t)buf[pos++] << 16;
t &= 0x7FFFFF;
if(t < ML_DSA_Q) {
a[ctr++] = t;
}
}
return ctr;
}
/*************************************************
* Name: ml_dsa_poly_uniform
*
* Description: FIPS 204: Algorithm 30 RejNTTPoly.
* Sample polynomial with uniformly random coefficients
* in [0,ML_DSA_Q-1] by performing rejection sampling on the
* output stream of SHAKE128(seed|nonce)
*
* Arguments: - poly *a: pointer to output polynomial
* - const uint8_t seed[]: byte array with seed of length SEEDBYTES
* - uint16_t nonce: 2-byte nonce
**************************************************/
#define POLY_UNIFORM_NBLOCKS ((768 + SHAKE128_BLOCKSIZE - 1)/ SHAKE128_BLOCKSIZE)
void ml_dsa_poly_uniform(ml_dsa_poly *a,
const uint8_t seed[ML_DSA_SEEDBYTES],
uint16_t nonce)
{
unsigned int i, ctr, off;
unsigned int buflen = POLY_UNIFORM_NBLOCKS*SHAKE128_BLOCKSIZE;
uint8_t buf[POLY_UNIFORM_NBLOCKS*SHAKE128_BLOCKSIZE + 2];
KECCAK1600_CTX state;
uint8_t t[2];
t[0] = nonce & 0xff;
t[1] = nonce >> 8;
SHAKE_Init(&state, SHAKE128_BLOCKSIZE);
SHAKE_Absorb(&state, seed, ML_DSA_SEEDBYTES);
SHAKE_Absorb(&state, t, 2);
SHAKE_Squeeze(buf, &state, POLY_UNIFORM_NBLOCKS * SHAKE128_BLOCKSIZE);
ctr = ml_dsa_rej_uniform(a->coeffs, ML_DSA_N, buf, buflen);
while(ctr < ML_DSA_N) {
off = buflen % 3;
for(i = 0; i < off; ++i)
buf[i] = buf[buflen - off + i];
SHAKE_Squeeze(buf + off, &state, POLY_UNIFORM_NBLOCKS * SHAKE128_BLOCKSIZE);
buflen = SHAKE128_BLOCKSIZE + off;
ctr += ml_dsa_rej_uniform(a->coeffs + ctr, ML_DSA_N - ctr, buf, buflen);
}
/* FIPS 204. Section 3.6.3 Destruction of intermediate values. */
OPENSSL_cleanse(buf, sizeof(buf));
OPENSSL_cleanse(&state, sizeof(state));
}
/*************************************************
* Name: rej_eta
*
* Description: Sample uniformly random coefficients in [-ETA, ETA] by
* performing rejection sampling on array of random bytes.
*
* Arguments: - ml_dsa_params: parameter struct
* - int32_t *a: pointer to output array (allocated)
* - unsigned int len: number of coefficients to be sampled
* - const uint8_t *buf: array of random bytes
* - unsigned int buflen: length of array of random bytes
*
* Returns number of sampled coefficients. Can be smaller than len if not enough
* random bytes were given.
**************************************************/
static unsigned int rej_eta(ml_dsa_params *params,
int32_t *a,
unsigned int len,
const uint8_t *buf,
unsigned int buflen)
{
assert((params->eta == 2) ||
(params->eta == 4));
unsigned int ctr, pos;
uint32_t t0, t1;
ctr = pos = 0;
while(ctr < len && pos < buflen) {
t0 = buf[pos] & 0x0F;
t1 = buf[pos++] >> 4;
if (params->eta == 2) {
if(t0 < 15) {
t0 = t0 - (205*t0 >> 10)*5;
a[ctr++] = 2 - t0;
}
if(t1 < 15 && ctr < len) {
t1 = t1 - (205*t1 >> 10)*5;
a[ctr++] = 2 - t1;
}
}
else if (params->eta == 4) {
if(t0 < 9)
a[ctr++] = 4 - t0;
if(t1 < 9 && ctr < len)
a[ctr++] = 4 - t1;
}
}
return ctr;
}
/*************************************************
* Name: ml_dsa_poly_uniform_eta
*
* Description: FIPS 204: Algorithm 31 RejBoundedPoly.
* Sample polynomial with uniformly random coefficients
* in [-ETA,ETA] by performing rejection sampling on the
* output stream from SHAKE256(seed|nonce)
*
* Arguments: - ml_dsa_params: parameter struct
* - poly *a: pointer to output polynomial
* - const uint8_t seed[]: byte array with seed of length CRHBYTES
* - uint16_t nonce: 2-byte nonce
**************************************************/
void ml_dsa_poly_uniform_eta(ml_dsa_params *params,
ml_dsa_poly *a,
const uint8_t seed[ML_DSA_CRHBYTES],
uint16_t nonce)
{
unsigned int ctr;
unsigned int buflen = ML_DSA_POLY_UNIFORM_ETA_NBLOCKS_MAX * SHAKE256_BLOCKSIZE;
uint8_t buf[ML_DSA_POLY_UNIFORM_ETA_NBLOCKS_MAX * SHAKE256_BLOCKSIZE];
KECCAK1600_CTX state;
uint8_t t[2];
t[0] = nonce & 0xff;
t[1] = nonce >> 8;
SHAKE_Init(&state, SHAKE256_BLOCKSIZE);
SHAKE_Absorb(&state, seed, ML_DSA_CRHBYTES);
SHAKE_Absorb(&state, t, 2);
SHAKE_Squeeze(buf, &state, ML_DSA_POLY_UNIFORM_ETA_NBLOCKS_MAX * SHAKE256_BLOCKSIZE);
ctr = rej_eta(params, a->coeffs, ML_DSA_N, buf, buflen);
while(ctr < ML_DSA_N) {
SHAKE_Squeeze(buf, &state, SHAKE256_BLOCKSIZE);
ctr += rej_eta(params, a->coeffs + ctr, ML_DSA_N - ctr, buf, SHAKE256_BLOCKSIZE);
}
/* FIPS 204. Section 3.6.3 Destruction of intermediate values. */
OPENSSL_cleanse(buf, sizeof(buf));
OPENSSL_cleanse(&state, sizeof(state));
}
/*************************************************
* Name: ml_dsa_poly_uniform_gamma1
*
* Description: Sample polynomial with uniformly random coefficients
* in [-(GAMMA1 - 1), GAMMA1] by unpacking output stream
* of SHAKE256(seed|nonce)
*
* Arguments: - ml_dsa_params: parameter struct
* - poly *a: pointer to output polynomial
* - const uint8_t seed[]: byte array with seed of length CRHBYTES
* - uint16_t nonce: 16-bit nonce
**************************************************/
#define POLY_UNIFORM_GAMMA1_NBLOCKS ((ML_DSA_POLYZ_PACKEDBYTES_MAX + SHAKE256_BLOCKSIZE - 1) / SHAKE256_BLOCKSIZE)
void ml_dsa_poly_uniform_gamma1(ml_dsa_params *params,
ml_dsa_poly *a,
const uint8_t seed[ML_DSA_CRHBYTES],
uint16_t nonce)
{
uint8_t buf[POLY_UNIFORM_GAMMA1_NBLOCKS * SHAKE256_BLOCKSIZE];
KECCAK1600_CTX state;
uint8_t t[2];
t[0] = nonce & 0xff;
t[1] = nonce >> 8;
SHAKE_Init(&state, SHAKE256_BLOCKSIZE);
SHAKE_Absorb(&state, seed, ML_DSA_CRHBYTES);
SHAKE_Absorb(&state, t, 2);
SHAKE_Final(buf, &state, POLY_UNIFORM_GAMMA1_NBLOCKS * SHAKE256_BLOCKSIZE);
ml_dsa_polyz_unpack(params, a, buf);
/* FIPS 204. Section 3.6.3 Destruction of intermediate values. */
OPENSSL_cleanse(buf, sizeof(buf));
OPENSSL_cleanse(&state, sizeof(state));
}
/*************************************************
* Name: ml_dsa_poly_challenge
*
* Description: Implementation of H. Samples polynomial with TAU nonzero
* coefficients in {-1,1} using the output stream of
* SHAKE256(seed).
*
* Arguments: - ml_dsa_params: parameter struct
* - poly *c: pointer to output polynomial
* - const uint8_t mu[]: byte array containing seed of length CTILDEBYTES
**************************************************/
void ml_dsa_poly_challenge(ml_dsa_params *params, ml_dsa_poly *c, const uint8_t *seed) {
unsigned int i, b, pos;
uint64_t signs;
uint8_t buf[SHAKE256_BLOCKSIZE];
KECCAK1600_CTX state;
SHAKE_Init(&state, SHAKE256_BLOCKSIZE);
SHAKE_Absorb(&state, seed, params->c_tilde_bytes);
SHAKE_Squeeze(buf, &state, SHAKE256_BLOCKSIZE);
signs = 0;
for(i = 0; i < 8; ++i) {
signs |= (uint64_t)buf[i] << 8*i;
}
pos = 8;
for(i = 0; i < ML_DSA_N; ++i) {
c->coeffs[i] = 0;
}
for(i = ML_DSA_N-params->tau; i < ML_DSA_N; ++i) {
do {
if(pos >= SHAKE256_BLOCKSIZE) {
SHAKE_Squeeze(buf, &state, SHAKE256_BLOCKSIZE);
pos = 0;
}
b = buf[pos++];
} while(b > i);
c->coeffs[i] = c->coeffs[b];
c->coeffs[b] = 1 - 2*(signs & 1);
signs >>= 1;
}
/* FIPS 204. Section 3.6.3 Destruction of intermediate values. */
OPENSSL_cleanse(&signs, sizeof(signs));
OPENSSL_cleanse(buf, sizeof(buf));
OPENSSL_cleanse(&state, sizeof(state));
}
/*************************************************
* Name: ml_dsa_polyeta_pack
*
* Description: Bit-pack polynomial with coefficients in [-ETA,ETA].
*
* Arguments: - ml_dsa_params: parameter struct
* - uint8_t *r: pointer to output byte array with at least
* POLYETA_PACKEDBYTES bytes
* - const poly *a: pointer to input polynomial
**************************************************/
void ml_dsa_polyeta_pack(ml_dsa_params *params, uint8_t *r, const ml_dsa_poly *a) {
unsigned int i;
uint8_t t[8];
assert((params->eta == 2) ||
(params->eta == 4));
if (params->eta == 2) {
for(i = 0; i < ML_DSA_N/8; ++i) {
t[0] = params->eta - a->coeffs[8*i+0];
t[1] = params->eta - a->coeffs[8*i+1];
t[2] = params->eta - a->coeffs[8*i+2];
t[3] = params->eta - a->coeffs[8*i+3];
t[4] = params->eta - a->coeffs[8*i+4];
t[5] = params->eta - a->coeffs[8*i+5];
t[6] = params->eta - a->coeffs[8*i+6];
t[7] = params->eta - a->coeffs[8*i+7];
r[3*i+0] = (t[0] >> 0) | (t[1] << 3) | (t[2] << 6);
r[3*i+1] = (t[2] >> 2) | (t[3] << 1) | (t[4] << 4) | (t[5] << 7);
r[3*i+2] = (t[5] >> 1) | (t[6] << 2) | (t[7] << 5);
}
}
else if (params->eta == 4) {
for(i = 0; i < ML_DSA_N/2; ++i) {
t[0] = params->eta - a->coeffs[2*i+0];
t[1] = params->eta - a->coeffs[2*i+1];
r[i] = t[0] | (t[1] << 4);
}
}
}
/*************************************************
* Name: ml_dsa_polyeta_unpack
*
* Description: Unpack polynomial with coefficients in [-ETA,ETA].
*
* Arguments: - ml_dsa_params: parameter struct
* - poly *r: pointer to output polynomial
* - const uint8_t *a: byte array with bit-packed polynomial
**************************************************/
void ml_dsa_polyeta_unpack(ml_dsa_params *params, ml_dsa_poly *r, const uint8_t *a) {
unsigned int i;
assert((params->eta == 2) ||
(params->eta == 4));
if (params->eta == 2) {
for(i = 0; i < ML_DSA_N/8; ++i) {
r->coeffs[8*i+0] = (a[3*i+0] >> 0) & 7;
r->coeffs[8*i+1] = (a[3*i+0] >> 3) & 7;
r->coeffs[8*i+2] = ((a[3*i+0] >> 6) | (a[3*i+1] << 2)) & 7;
r->coeffs[8*i+3] = (a[3*i+1] >> 1) & 7;
r->coeffs[8*i+4] = (a[3*i+1] >> 4) & 7;
r->coeffs[8*i+5] = ((a[3*i+1] >> 7) | (a[3*i+2] << 1)) & 7;
r->coeffs[8*i+6] = (a[3*i+2] >> 2) & 7;
r->coeffs[8*i+7] = (a[3*i+2] >> 5) & 7;
r->coeffs[8*i+0] = params->eta - r->coeffs[8*i+0];
r->coeffs[8*i+1] = params->eta - r->coeffs[8*i+1];
r->coeffs[8*i+2] = params->eta - r->coeffs[8*i+2];
r->coeffs[8*i+3] = params->eta - r->coeffs[8*i+3];
r->coeffs[8*i+4] = params->eta - r->coeffs[8*i+4];
r->coeffs[8*i+5] = params->eta - r->coeffs[8*i+5];
r->coeffs[8*i+6] = params->eta - r->coeffs[8*i+6];
r->coeffs[8*i+7] = params->eta - r->coeffs[8*i+7];
}
}
else if (params->eta == 4) {
for(i = 0; i < ML_DSA_N/2; ++i) {
r->coeffs[2*i+0] = a[i] & 0x0F;
r->coeffs[2*i+1] = a[i] >> 4;
r->coeffs[2*i+0] = params->eta - r->coeffs[2*i+0];
r->coeffs[2*i+1] = params->eta - r->coeffs[2*i+1];
}
}
}
/*************************************************
* Name: ml_dsa_polyt1_pack
*
* Description: Bit-pack polynomial t1 with coefficients fitting in 10 bits.
* Input coefficients are assumed to be standard representatives.
*
* Arguments: - uint8_t *r: pointer to output byte array with at least
* POLYT1_PACKEDBYTES bytes
* - const poly *a: pointer to input polynomial
**************************************************/
void ml_dsa_polyt1_pack(uint8_t *r, const ml_dsa_poly *a) {
unsigned int i;
for(i = 0; i < ML_DSA_N/4; ++i) {
r[5*i+0] = (a->coeffs[4*i+0] >> 0);
r[5*i+1] = (a->coeffs[4*i+0] >> 8) | (a->coeffs[4*i+1] << 2);
r[5*i+2] = (a->coeffs[4*i+1] >> 6) | (a->coeffs[4*i+2] << 4);
r[5*i+3] = (a->coeffs[4*i+2] >> 4) | (a->coeffs[4*i+3] << 6);
r[5*i+4] = (a->coeffs[4*i+3] >> 2);
}
}
/*************************************************
* Name: ml_dsa_polyt1_unpack
*
* Description: Unpack polynomial t1 with 10-bit coefficients.
* Output coefficients are standard representatives.
*
* Arguments: - poly *r: pointer to output polynomial
* - const uint8_t *a: byte array with bit-packed polynomial
**************************************************/
void ml_dsa_polyt1_unpack(ml_dsa_poly *r, const uint8_t *a) {
unsigned int i;
for(i = 0; i < ML_DSA_N/4; ++i) {
r->coeffs[4*i+0] = ((a[5*i+0] >> 0) | ((uint32_t)a[5*i+1] << 8)) & 0x3FF;
r->coeffs[4*i+1] = ((a[5*i+1] >> 2) | ((uint32_t)a[5*i+2] << 6)) & 0x3FF;
r->coeffs[4*i+2] = ((a[5*i+2] >> 4) | ((uint32_t)a[5*i+3] << 4)) & 0x3FF;
r->coeffs[4*i+3] = ((a[5*i+3] >> 6) | ((uint32_t)a[5*i+4] << 2)) & 0x3FF;
}
}
/*************************************************
* Name: ml_dsa_polyt0_pack
*
* Description: Bit-pack polynomial t0 with coefficients in ]-2^{D-1}, 2^{D-1}].
*
* Arguments: - uint8_t *r: pointer to output byte array with at least
* POLYT0_PACKEDBYTES bytes
* - const poly *a: pointer to input polynomial
**************************************************/
void ml_dsa_polyt0_pack(uint8_t *r, const ml_dsa_poly *a) {
unsigned int i;
uint32_t t[8];
for(i = 0; i < ML_DSA_N/8; ++i) {
t[0] = (1 << (ML_DSA_D-1)) - a->coeffs[8*i+0];
t[1] = (1 << (ML_DSA_D-1)) - a->coeffs[8*i+1];
t[2] = (1 << (ML_DSA_D-1)) - a->coeffs[8*i+2];
t[3] = (1 << (ML_DSA_D-1)) - a->coeffs[8*i+3];
t[4] = (1 << (ML_DSA_D-1)) - a->coeffs[8*i+4];
t[5] = (1 << (ML_DSA_D-1)) - a->coeffs[8*i+5];
t[6] = (1 << (ML_DSA_D-1)) - a->coeffs[8*i+6];
t[7] = (1 << (ML_DSA_D-1)) - a->coeffs[8*i+7];
r[13*i+ 0] = t[0];
r[13*i+ 1] = t[0] >> 8;
r[13*i+ 1] |= t[1] << 5;
r[13*i+ 2] = t[1] >> 3;
r[13*i+ 3] = t[1] >> 11;
r[13*i+ 3] |= t[2] << 2;
r[13*i+ 4] = t[2] >> 6;
r[13*i+ 4] |= t[3] << 7;
r[13*i+ 5] = t[3] >> 1;
r[13*i+ 6] = t[3] >> 9;
r[13*i+ 6] |= t[4] << 4;
r[13*i+ 7] = t[4] >> 4;
r[13*i+ 8] = t[4] >> 12;
r[13*i+ 8] |= t[5] << 1;
r[13*i+ 9] = t[5] >> 7;
r[13*i+ 9] |= t[6] << 6;
r[13*i+10] = t[6] >> 2;
r[13*i+11] = t[6] >> 10;
r[13*i+11] |= t[7] << 3;
r[13*i+12] = t[7] >> 5;
}
}
/*************************************************
* Name: ml_dsa_polyt0_unpack
*
* Description: Unpack polynomial t0 with coefficients in ]-2^{D-1}, 2^{D-1}].
*
* Arguments: - poly *r: pointer to output polynomial
* - const uint8_t *a: byte array with bit-packed polynomial
**************************************************/
void ml_dsa_polyt0_unpack(ml_dsa_poly *r, const uint8_t *a) {
unsigned int i;
for(i = 0; i < ML_DSA_N/8; ++i) {
r->coeffs[8*i+0] = a[13*i+0];
r->coeffs[8*i+0] |= (uint32_t)a[13*i+1] << 8;
r->coeffs[8*i+0] &= 0x1FFF;
r->coeffs[8*i+1] = a[13*i+1] >> 5;
r->coeffs[8*i+1] |= (uint32_t)a[13*i+2] << 3;
r->coeffs[8*i+1] |= (uint32_t)a[13*i+3] << 11;
r->coeffs[8*i+1] &= 0x1FFF;
r->coeffs[8*i+2] = a[13*i+3] >> 2;
r->coeffs[8*i+2] |= (uint32_t)a[13*i+4] << 6;
r->coeffs[8*i+2] &= 0x1FFF;
r->coeffs[8*i+3] = a[13*i+4] >> 7;
r->coeffs[8*i+3] |= (uint32_t)a[13*i+5] << 1;
r->coeffs[8*i+3] |= (uint32_t)a[13*i+6] << 9;
r->coeffs[8*i+3] &= 0x1FFF;
r->coeffs[8*i+4] = a[13*i+6] >> 4;
r->coeffs[8*i+4] |= (uint32_t)a[13*i+7] << 4;
r->coeffs[8*i+4] |= (uint32_t)a[13*i+8] << 12;
r->coeffs[8*i+4] &= 0x1FFF;
r->coeffs[8*i+5] = a[13*i+8] >> 1;
r->coeffs[8*i+5] |= (uint32_t)a[13*i+9] << 7;
r->coeffs[8*i+5] &= 0x1FFF;
r->coeffs[8*i+6] = a[13*i+9] >> 6;
r->coeffs[8*i+6] |= (uint32_t)a[13*i+10] << 2;
r->coeffs[8*i+6] |= (uint32_t)a[13*i+11] << 10;
r->coeffs[8*i+6] &= 0x1FFF;
r->coeffs[8*i+7] = a[13*i+11] >> 3;
r->coeffs[8*i+7] |= (uint32_t)a[13*i+12] << 5;
r->coeffs[8*i+7] &= 0x1FFF;
r->coeffs[8*i+0] = (1 << (ML_DSA_D-1)) - r->coeffs[8*i+0];
r->coeffs[8*i+1] = (1 << (ML_DSA_D-1)) - r->coeffs[8*i+1];
r->coeffs[8*i+2] = (1 << (ML_DSA_D-1)) - r->coeffs[8*i+2];
r->coeffs[8*i+3] = (1 << (ML_DSA_D-1)) - r->coeffs[8*i+3];
r->coeffs[8*i+4] = (1 << (ML_DSA_D-1)) - r->coeffs[8*i+4];
r->coeffs[8*i+5] = (1 << (ML_DSA_D-1)) - r->coeffs[8*i+5];
r->coeffs[8*i+6] = (1 << (ML_DSA_D-1)) - r->coeffs[8*i+6];
r->coeffs[8*i+7] = (1 << (ML_DSA_D-1)) - r->coeffs[8*i+7];
}
}
/*************************************************
* Name: ml_dsa_polyz_pack
*
* Description: Bit-pack polynomial with coefficients
* in [-(GAMMA1 - 1), GAMMA1].
*
* Arguments: - ml_dsa_params: parameter struct
* - uint8_t *r: pointer to output byte array with at least
* POLYZ_PACKEDBYTES bytes
* - const poly *a: pointer to input polynomial
**************************************************/
void ml_dsa_polyz_pack(ml_dsa_params *params, uint8_t *r, const ml_dsa_poly *a) {
unsigned int i;
uint32_t t[4];
assert((params->gamma1 == (1 << 17)) ||
(params->gamma1 == (1 << 19)));
if (params->gamma1 == (1 << 17)) {
for(i = 0; i < ML_DSA_N/4; ++i) {
t[0] = params->gamma1 - a->coeffs[4*i+0];
t[1] = params->gamma1 - a->coeffs[4*i+1];
t[2] = params->gamma1 - a->coeffs[4*i+2];
t[3] = params->gamma1 - a->coeffs[4*i+3];
r[9*i+0] = t[0];
r[9*i+1] = t[0] >> 8;
r[9*i+2] = t[0] >> 16;
r[9*i+2] |= t[1] << 2;
r[9*i+3] = t[1] >> 6;
r[9*i+4] = t[1] >> 14;
r[9*i+4] |= t[2] << 4;
r[9*i+5] = t[2] >> 4;
r[9*i+6] = t[2] >> 12;
r[9*i+6] |= t[3] << 6;
r[9*i+7] = t[3] >> 2;
r[9*i+8] = t[3] >> 10;
}
}
else if (params->gamma1 == (1 << 19)) {
for(i = 0; i < ML_DSA_N/2; ++i) {
t[0] = params->gamma1 - a->coeffs[2*i+0];
t[1] = params->gamma1 - a->coeffs[2*i+1];
r[5*i+0] = t[0];
r[5*i+1] = t[0] >> 8;
r[5*i+2] = t[0] >> 16;
r[5*i+2] |= t[1] << 4;
r[5*i+3] = t[1] >> 4;
r[5*i+4] = t[1] >> 12;
}
}
}
/*************************************************
* Name: ml_dsa_polyz_unpack
*
* Description: Unpack polynomial z with coefficients
* in [-(GAMMA1 - 1), GAMMA1].
*
* Arguments: - ml_dsa_params: parameter struct
* - poly *r: pointer to output polynomial
* - const uint8_t *a: byte array with bit-packed polynomial
**************************************************/
void ml_dsa_polyz_unpack(ml_dsa_params *params, ml_dsa_poly *r, const uint8_t *a) {
unsigned int i;
assert((params->gamma1 == (1 << 17)) ||
(params->gamma1 == (1 << 19)));
if (params->gamma1 == (1 << 17)) {
for(i = 0; i < ML_DSA_N/4; ++i) {
r->coeffs[4*i+0] = a[9*i+0];
r->coeffs[4*i+0] |= (uint32_t)a[9*i+1] << 8;
r->coeffs[4*i+0] |= (uint32_t)a[9*i+2] << 16;
r->coeffs[4*i+0] &= 0x3FFFF;
r->coeffs[4*i+1] = a[9*i+2] >> 2;
r->coeffs[4*i+1] |= (uint32_t)a[9*i+3] << 6;
r->coeffs[4*i+1] |= (uint32_t)a[9*i+4] << 14;
r->coeffs[4*i+1] &= 0x3FFFF;
r->coeffs[4*i+2] = a[9*i+4] >> 4;
r->coeffs[4*i+2] |= (uint32_t)a[9*i+5] << 4;
r->coeffs[4*i+2] |= (uint32_t)a[9*i+6] << 12;
r->coeffs[4*i+2] &= 0x3FFFF;
r->coeffs[4*i+3] = a[9*i+6] >> 6;
r->coeffs[4*i+3] |= (uint32_t)a[9*i+7] << 2;
r->coeffs[4*i+3] |= (uint32_t)a[9*i+8] << 10;
r->coeffs[4*i+3] &= 0x3FFFF;
r->coeffs[4*i+0] = params->gamma1 - r->coeffs[4*i+0];
r->coeffs[4*i+1] = params->gamma1 - r->coeffs[4*i+1];
r->coeffs[4*i+2] = params->gamma1 - r->coeffs[4*i+2];
r->coeffs[4*i+3] = params->gamma1 - r->coeffs[4*i+3];
}
}
else if (params->gamma1 == (1 << 19)) {
for(i = 0; i < ML_DSA_N/2; ++i) {
r->coeffs[2*i+0] = a[5*i+0];
r->coeffs[2*i+0] |= (uint32_t)a[5*i+1] << 8;
r->coeffs[2*i+0] |= (uint32_t)a[5*i+2] << 16;
r->coeffs[2*i+0] &= 0xFFFFF;
r->coeffs[2*i+1] = a[5*i+2] >> 4;
r->coeffs[2*i+1] |= (uint32_t)a[5*i+3] << 4;
r->coeffs[2*i+1] |= (uint32_t)a[5*i+4] << 12;
/* r->coeffs[2*i+1] &= 0xFFFFF; */ /* No effect, since we're anyway at 20 bits */
r->coeffs[2*i+0] = params->gamma1 - r->coeffs[2*i+0];
r->coeffs[2*i+1] = params->gamma1 - r->coeffs[2*i+1];
}
}
}
/*************************************************
* Name: ml_dsa_polyw1_pack
*
* Description: Bit-pack polynomial w1 with coefficients in [0,15] or [0,43].
* Input coefficients are assumed to be standard representatives.
*
* Arguments: - ml_dsa_params: parameter struct
* - uint8_t *r: pointer to output byte array with at least
* POLYW1_PACKEDBYTES bytes
* - const poly *a: pointer to input polynomial
**************************************************/
void ml_dsa_polyw1_pack(ml_dsa_params *params, uint8_t *r, const ml_dsa_poly *a) {
unsigned int i;
if (params->gamma2 == (ML_DSA_Q-1)/88) {
for(i = 0; i < ML_DSA_N/4; ++i) {
r[3*i+0] = a->coeffs[4*i+0];
r[3*i+0] |= a->coeffs[4*i+1] << 6;
r[3*i+1] = a->coeffs[4*i+1] >> 2;
r[3*i+1] |= a->coeffs[4*i+2] << 4;
r[3*i+2] = a->coeffs[4*i+2] >> 4;
r[3*i+2] |= a->coeffs[4*i+3] << 2;
}
}
else if (params->gamma2 == (ML_DSA_Q-1)/32) {
for(i = 0; i < ML_DSA_N/2; ++i)
r[i] = a->coeffs[2*i+0] | (a->coeffs[2*i+1] << 4);
}
}