crypto/fipsmodule/ml_kem/mlkem/verify.h (157 lines of code) (raw):

/* * Copyright (c) 2024-2025 The mlkem-native project authors * SPDX-License-Identifier: Apache-2.0 */ #ifndef MLK_VERIFY_H #define MLK_VERIFY_H #include <limits.h> #include <stddef.h> #include <stdint.h> #include "cbmc.h" #include "common.h" /* Constant-time comparisons and conditional operations We reduce the risk for compilation into variable-time code through the use of 'value barriers'. Functionally, a value barrier is a no-op. To the compiler, however, it constitutes an arbitrary modification of its input, and therefore harden's value propagation and range analysis. We consider two approaches to implement a value barrier: - An empty inline asm block which marks the target value as clobbered. - XOR'ing with the value of a volatile global that's set to 0; for a discussion / implementation of this idea, see e.g. * https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/hqbtIGFKIpU/m/H14H0wOlBgAJ * https://lib.mceliece.org/libmceliece-20240513/inttypes/crypto_intN.h.html The first approach is cheap because it only prevents the compiler from reasoning about the value of the variable past the barrier, but does not directly generate additional instructions. The second approach generates redundant loads and XOR operations and therefore comes at a higher runtime cost. However, it appears more robust towards optimization, as compilers should never drop a volatile load. We use the empty-ASM value barrier for GCC and clang, and fall back to the global volatile barrier otherwise. The global value barrier can be forced by setting MLK_CONFIG_NO_ASM_VALUE_BARRIER. */ #if defined(MLK_HAVE_INLINE_ASM) && !defined(MLK_CONFIG_NO_ASM_VALUE_BARRIER) #define MLK_USE_ASM_VALUE_BARRIER #endif #if !defined(MLK_USE_ASM_VALUE_BARRIER) /* * Declaration of global volatile that the global value barrier * is loading from and masking with. */ #define mlk_ct_opt_blocker_u64 MLK_NAMESPACE(ct_opt_blocker_u64) extern volatile uint64_t mlk_ct_opt_blocker_u64; /* Helper functions for obtaining global masks of various sizes */ /* This contract is not proved but treated as an axiom. * * Its validity relies on the assumption that the global opt-blocker * constant mlk_ct_opt_blocker_u64 is not modified. */ static MLK_INLINE uint64_t mlk_ct_get_optblocker_u64(void) __contract__(ensures(return_value == 0)) { return mlk_ct_opt_blocker_u64; } static MLK_INLINE uint8_t mlk_ct_get_optblocker_u8(void) __contract__(ensures(return_value == 0)) { return (uint8_t)mlk_ct_get_optblocker_u64(); } static MLK_INLINE uint32_t mlk_ct_get_optblocker_u32(void) __contract__(ensures(return_value == 0)) { return (uint32_t)mlk_ct_get_optblocker_u64(); } static MLK_INLINE int32_t mlk_ct_get_optblocker_i32(void) __contract__(ensures(return_value == 0)) { return (int32_t)mlk_ct_get_optblocker_u64(); } /* Opt-blocker based implementation of value barriers */ static MLK_INLINE uint32_t mlk_value_barrier_u32(uint32_t b) __contract__(ensures(return_value == b)) { return (b ^ mlk_ct_get_optblocker_u32()); } static MLK_INLINE int32_t mlk_value_barrier_i32(int32_t b) __contract__(ensures(return_value == b)) { return (b ^ mlk_ct_get_optblocker_i32()); } static MLK_INLINE uint8_t mlk_value_barrier_u8(uint8_t b) __contract__(ensures(return_value == b)) { return (b ^ mlk_ct_get_optblocker_u8()); } #else /* !MLK_USE_ASM_VALUE_BARRIER */ static MLK_INLINE uint32_t mlk_value_barrier_u32(uint32_t b) __contract__(ensures(return_value == b)) { __asm__("" : "+r"(b)); return b; } static MLK_INLINE int32_t mlk_value_barrier_i32(int32_t b) __contract__(ensures(return_value == b)) { __asm__("" : "+r"(b)); return b; } static MLK_INLINE uint8_t mlk_value_barrier_u8(uint8_t b) __contract__(ensures(return_value == b)) { __asm__("" : "+r"(b)); return b; } #endif /* MLK_USE_ASM_VALUE_BARRIER */ /* * The ct_cmask_nonzero_xxx functions below make deliberate use of unsigned * overflow, which is fully defined behaviour in C. It is thus safe to disable * this warning. */ #ifdef CBMC #pragma CPROVER check push #pragma CPROVER check disable "unsigned-overflow" #endif /************************************************* * Name: mlk_ct_cmask_nonzero_u16 * * Description: Return 0 if input is zero, and -1 otherwise. * * Arguments: uint16_t x: Value to be converted into a mask * **************************************************/ /* Reference: Embedded in `cmov_int16()` in the reference implementation. * - Use value barrier and shift instead of `b = -b` to * convert condition into mask. */ static MLK_INLINE uint16_t mlk_ct_cmask_nonzero_u16(uint16_t x) __contract__(ensures(return_value == ((x == 0) ? 0 : 0xFFFF))) { uint32_t tmp = mlk_value_barrier_u32(-((uint32_t)x)); tmp >>= 16; return tmp; } /************************************************* * Name: mlk_ct_cmask_nonzero_u8 * * Description: Return 0 if input is zero, and -1 otherwise. * * Arguments: uint8_t x: Value to be converted into a mask * **************************************************/ /* Reference: Embedded in `verify()` and `cmov()` in the * reference implementation. * - We include a value barrier not present in the * reference implementation, to prevent the compiler * from realizing that this function returns a mask. */ static MLK_INLINE uint8_t mlk_ct_cmask_nonzero_u8(uint8_t x) __contract__(ensures(return_value == ((x == 0) ? 0 : 0xFF))) { uint32_t tmp = mlk_value_barrier_u32(-((uint32_t)x)); tmp >>= 24; return tmp; } /* Put unsigned overflow warnings in CBMC back into scope */ #ifdef CBMC #pragma CPROVER check pop #endif /* * The mlk_ct_cmask_neg_i16 function below makes deliberate use of * signed to unsigned integer conversion, which is fully defined * behaviour in C. It is thus safe to disable this warning. */ #ifdef CBMC #pragma CPROVER check push #pragma CPROVER check disable "conversion" #endif /************************************************* * Name: mlk_ct_cmask_neg_i16 * * Description: Return 0 if input is non-negative, and -1 otherwise. * * Arguments: uint16_t x: Value to be converted into a mask * **************************************************/ /* Reference: Embedded in polynomial compression function in the * reference implementation. * - Used as part of signed->unsigned conversion for modular * representatives to detect whether the input is negative. * This happen in `mlk_poly_reduce()` here, and as part of * polynomial compression functions in the reference * implementation. See `mlk_poly_reduce()`. * - We use value barriers to reduce the risk of * compiler-introduced branches. */ static MLK_INLINE uint16_t mlk_ct_cmask_neg_i16(int16_t x) __contract__(ensures(return_value == ((x < 0) ? 0xFFFF : 0))) { int32_t tmp = mlk_value_barrier_i32((int32_t)x); tmp >>= 16; return (int16_t)tmp; } /* Put unsigned-to-signed warnings in CBMC back into scope */ #ifdef CBMC #pragma CPROVER check pop #endif /* * The ct_csel_xxx functions below make deliberate use of unsigned * to signed integer conversion, which is implementation-defined * behaviour. Here, we assume that uint16_t -> int16_t is inverse * to int16_t -> uint16_t. */ #ifdef CBMC #pragma CPROVER check push #pragma CPROVER check disable "conversion" #endif /************************************************* * Name: mlk_ct_sel_int16 * * Description: Functionally equivalent to cond ? a : b, * but implemented with guards against * compiler-introduced branches. * * Arguments: int16_t a: First alternative * int16_t b: Second alternative * uint16_t cond: Condition variable. * * Specification: * - With `a = MLKEM_Q_HALF` and `b=0`, this essentially * implements `Decompress_1` [FIPS 203, Eq (4.8)] in `mlk_poly_frommsg()`. * - With `a = x + MLKEM_Q`, `b = x`, and `cond` indicating whether `x` * is negative, implements signed->unsigned conversion of modular * representatives. Questions of representation are not considered * in the specification [FIPS 203, Section 2.4.1, "The pseudocode is * agnostic regarding how an integer modulo 𝑚 is represented in * actual implementations"]. * **************************************************/ /* Reference: Embedded in polynomial compression function in the * reference implementation. * - Used as part of signed->unsigned conversion for modular * representatives. This happen in `mlk_poly_reduce()` here, * and as part of polynomial compression functions in the * reference implementation. See `mlk_poly_reduce()`. * - Barrier to reduce the risk of compiler-introduced branches. * For `a = MLKEM_Q_HALF` and `b=0`, also embedded in * `poly_frommsg()` from the reference implementation, which uses * `cmov_int16()` instead. */ static MLK_INLINE int16_t mlk_ct_sel_int16(int16_t a, int16_t b, uint16_t cond) __contract__(ensures(return_value == (cond ? a : b))) { uint16_t au = a, bu = b; uint16_t res = bu ^ (mlk_ct_cmask_nonzero_u16(cond) & (au ^ bu)); return (int16_t)res; } /* Put unsigned-to-signed warnings in CBMC back into scope */ #ifdef CBMC #pragma CPROVER check pop #endif /************************************************* * Name: mlk_ct_sel_uint8 * * Description: Functionally equivalent to cond ? a : b, * but implemented with guards against * compiler-introduced branches. * * Arguments: uint8_t a: First alternative * uint8_t b: Second alternative * uuint8_t cond: Condition variable. * **************************************************/ /* Reference: Embedded into `cmov()` in the reference implementation. * - Use value barrier to get mask from condition value. */ static MLK_INLINE uint8_t mlk_ct_sel_uint8(uint8_t a, uint8_t b, uint8_t cond) __contract__(ensures(return_value == (cond ? a : b))) { return b ^ (mlk_ct_cmask_nonzero_u8(cond) & (a ^ b)); } /************************************************* * Name: mlk_ct_memcmp * * Description: Compare two arrays for equality in constant time. * * Arguments: const uint8_t *a: pointer to first byte array * const uint8_t *b: pointer to second byte array * size_t len: length of the byte arrays * * Returns 0 if the byte arrays are equal, a non-zero value otherwise * * Specification: * - Used to securely compute conditional move in * [FIPS 203, Algorithm 18 (ML-KEM.Decaps_Internal, L9-11] * **************************************************/ /* Reference: `cmov()` in the reference implementation * - We return `uint8_t`, not `int`. * - We use an additional XOR-accumulator in the comparison loop * which prevents early abort if the OR-accumulator is 0xFF. * - We use a value barrier to convert the OR-accumulator into * a mask. The reference implementation uses a shift which the * compiler can argue to result in either 0 of 0xFF..FF. */ static MLK_INLINE uint8_t mlk_ct_memcmp(const uint8_t *a, const uint8_t *b, const size_t len) __contract__( requires(memory_no_alias(a, len)) requires(memory_no_alias(b, len)) requires(len <= INT_MAX) ensures((return_value == 0) == forall(i, 0, len, (a[i] == b[i])))) { uint8_t r = 0, s = 0; unsigned i; for (i = 0; i < len; i++) __loop__( invariant(i <= len) invariant((r == 0) == (forall(k, 0, i, (a[k] == b[k]))))) { r |= a[i] ^ b[i]; /* s is useless, but prevents the loop from being aborted once r=0xff. */ s ^= a[i] ^ b[i]; } /* * - Convert r into a mask; this may not be necessary, but is an additional * safeguard * towards leaking information about a and b. * - XOR twice with s, separated by a value barrier, to prevent the compile * from dropping the s computation in the loop. */ return (mlk_value_barrier_u8(mlk_ct_cmask_nonzero_u8(r) ^ s) ^ s); } /************************************************* * Name: mlk_ct_cmov_zero * * Description: Copy len bytes from x to r if b is zero; * don't modify x if b is non-zero. * assumes two's complement representation of negative integers. * Runs in constant time. * * Arguments: uint8_t *r: pointer to output byte array * const uint8_t *x: pointer to input byte array * size_t len: Amount of bytes to be copied * uint8_t b: Condition value. * * Specification: * - Used to securely compute conditional move in * [FIPS 203, Algorithm 18 (ML-KEM.Decaps_Internal, L9-11] * **************************************************/ /* Reference: `cmov()` in the reference implementation. * - We move if condition value is `0`, not `1`. * - We use `mlk_ct_sel_uint8` for constant-time selection. */ static MLK_INLINE void mlk_ct_cmov_zero(uint8_t *r, const uint8_t *x, size_t len, uint8_t b) __contract__( requires(memory_no_alias(r, len)) requires(memory_no_alias(x, len)) assigns(memory_slice(r, len))) { size_t i; for (i = 0; i < len; i++) __loop__(invariant(i <= len)) { r[i] = mlk_ct_sel_uint8(r[i], x[i], b); } } /************************************************* * Name: mlk_zeroize * * Description: Force-zeroize a buffer. * * Arguments: uint8_t *r: pointer to byte array to be zeroed * size_t len: Amount of bytes to be zeroed * * Specification: Used to implement * [FIPS 203, Section 3.3, Destruction of intermediate values] * **************************************************/ /* Reference: Not present in the reference implementation. */ #if !defined(MLK_CONFIG_CUSTOM_ZEROIZE) #if defined(MLK_SYS_WINDOWS) #include <windows.h> static MLK_INLINE void mlk_zeroize(void *ptr, size_t len) __contract__( requires(memory_no_alias(ptr, len)) assigns(memory_slice(ptr, len))) { SecureZeroMemory(ptr, len); } #elif defined(MLK_HAVE_INLINE_ASM) #include <string.h> static MLK_INLINE void mlk_zeroize(void *ptr, size_t len) __contract__( requires(memory_no_alias(ptr, len)) assigns(memory_slice(ptr, len))) { memset(ptr, 0, len); /* This follows OpenSSL and seems sufficient to prevent the compiler * from optimizing away the memset. * * If there was a reliable way to detect availability of memset_s(), * that would be preferred. */ __asm__ __volatile__("" : : "r"(ptr) : "memory"); } #else /* !MLK_SYS_WINDOWS && MLK_HAVE_INLINE_ASM */ #error No plausibly-secure implementation of mlk_zeroize available. Please provide your own using MLK_CONFIG_CUSTOM_ZEROIZE. #endif /* !MLK_SYS_WINDOWS && !MLK_HAVE_INLINE_ASM */ #endif /* !MLK_CONFIG_CUSTOM_ZEROIZE */ #endif /* !MLK_VERIFY_H */