samcli/lib/build/app_builder.py (668 lines of code) (raw):
"""
Builds the application
"""
import io
import json
import logging
import os
import pathlib
from pathlib import Path
from typing import Dict, List, NamedTuple, Optional, cast
import docker
import docker.errors
from aws_lambda_builders import (
RPC_PROTOCOL_VERSION as lambda_builders_protocol_version,
)
from aws_lambda_builders.builder import LambdaBuilder
from aws_lambda_builders.exceptions import LambdaBuilderError
from samcli.commands._utils.experimental import get_enabled_experimental_flags
from samcli.lib.build.build_graph import BuildGraph, FunctionBuildDefinition, LayerBuildDefinition
from samcli.lib.build.build_strategy import (
BuildStrategy,
CachedOrIncrementalBuildStrategyWrapper,
DefaultBuildStrategy,
ParallelBuildStrategy,
)
from samcli.lib.build.constants import BUILD_PROPERTIES, DEPRECATED_RUNTIMES
from samcli.lib.build.exceptions import (
BuildError,
BuildInsideContainerError,
DockerBuildFailed,
DockerConnectionError,
DockerfileOutSideOfContext,
UnsupportedBuilderLibraryVersionError,
)
from samcli.lib.build.utils import _make_env_vars
from samcli.lib.build.workflow_config import (
CONFIG,
UnsupportedRuntimeException,
get_layer_subfolder,
get_workflow_config,
supports_specified_workflow,
)
from samcli.lib.constants import DOCKER_MIN_API_VERSION
from samcli.lib.docker.log_streamer import LogStreamer, LogStreamError
from samcli.lib.providers.provider import ResourcesToBuildCollector, Stack, get_full_path
from samcli.lib.samlib.resource_metadata_normalizer import ResourceMetadataNormalizer
from samcli.lib.utils import osutils
from samcli.lib.utils.colors import Colored, Colors
from samcli.lib.utils.lambda_builders import patch_runtime
from samcli.lib.utils.packagetype import IMAGE, ZIP
from samcli.lib.utils.path_utils import check_path_valid_type, convert_path_to_unix_path
from samcli.lib.utils.resources import (
AWS_CLOUDFORMATION_STACK,
AWS_LAMBDA_FUNCTION,
AWS_LAMBDA_LAYERVERSION,
AWS_SERVERLESS_APPLICATION,
AWS_SERVERLESS_FUNCTION,
AWS_SERVERLESS_LAYERVERSION,
)
from samcli.lib.utils.stream_writer import StreamWriter
from samcli.local.docker.container import ContainerContext
from samcli.local.docker.lambda_build_container import LambdaBuildContainer
from samcli.local.docker.manager import ContainerManager, DockerImagePullFailedException
from samcli.local.docker.utils import get_docker_platform, is_docker_reachable
LOG = logging.getLogger(__name__)
FIRST_COMPATIBLE_RUNTIME_INDEX = 0
HTTP_400 = 400
HTTP_500 = 500
HTTP_505 = 505
JSON_RPC_CODE = -32601
class ApplicationBuildResult(NamedTuple):
"""
Result of the application build, build_graph and the built artifacts in dictionary
"""
build_graph: BuildGraph
artifacts: Dict[str, str]
class ApplicationBuilder:
"""
Class to build an entire application. Currently, this class builds Lambda functions only, but there is nothing that
is stopping this class from supporting other resource types. Building in context of Lambda functions refer to
converting source code into artifacts that can be run on AWS Lambda
"""
def __init__(
self,
resources_to_build: ResourcesToBuildCollector,
build_dir: str,
base_dir: str,
cache_dir: str,
cached: bool = False,
is_building_specific_resource: bool = False,
manifest_path_override: Optional[str] = None,
container_manager: Optional[ContainerManager] = None,
parallel: bool = False,
mode: Optional[str] = None,
stream_writer: Optional[StreamWriter] = None,
docker_client: Optional[docker.DockerClient] = None,
container_env_var: Optional[Dict] = None,
container_env_var_file: Optional[str] = None,
build_images: Optional[Dict] = None,
combine_dependencies: bool = True,
build_in_source: Optional[bool] = None,
mount_with_write: bool = False,
mount_symlinks: Optional[bool] = False,
) -> None:
"""
Initialize the class
Parameters
----------
resources_to_build: Iterator
Iterator that can vend out resources available in the SAM template
build_dir : str
Path to the directory where we will be storing built artifacts
base_dir : str
Path to a folder. Use this folder as the root to resolve relative source code paths against
cache_dir : str
Path to a the directory where we will be caching built artifacts
cached:
Optional. Set to True to build each function with cache to improve performance
is_building_specific_resource : boolean
Whether customer requested to build a specific resource alone in isolation,
by specifying function_identifier to the build command.
Ex: sam build MyServerlessFunction
manifest_path_override : Optional[str]
Optional path to manifest file to replace the default one
container_manager : samcli.local.docker.manager.ContainerManager
Optional. If provided, we will attempt to build inside a Docker Container
parallel : bool
Optional. Set to True to build each function in parallel to improve performance
mode : str
Optional, name of the build mode to use ex: 'debug'
stream_writer : Optional[StreamWriter]
An optional stream writer to accept stderr output
docker_client : Optional[docker.DockerClient]
An optional Docker client object to replace the default one loaded from env
container_env_var : Optional[Dict]
An optional dictionary of environment variables to pass to the container
container_env_var_file : Optional[str]
An optional path to file that contains environment variables to pass to the container
build_images : Optional[Dict]
An optional dictionary of build images to be used for building functions
combine_dependencies: bool
An optional bool parameter to inform lambda builders whether we should separate the source code and
dependencies or not.
build_in_source: Optional[bool]
Set to True to build in the source directory.
mount_with_write: bool
Mount source code directory with write permissions when building inside container.
mount_symlinks: Optional[bool]
True if symlinks should be mounted in the container.
"""
self._resources_to_build = resources_to_build
self._build_dir = build_dir
self._base_dir = base_dir
self._cache_dir = cache_dir
self._cached = cached
self._manifest_path_override = manifest_path_override
self._is_building_specific_resource = is_building_specific_resource
self._container_manager = container_manager
self._parallel = parallel
self._mode = mode
self._stream_writer = stream_writer if stream_writer else StreamWriter(stream=osutils.stderr(), auto_flush=True)
self._docker_client = docker_client if docker_client else docker.from_env(version=DOCKER_MIN_API_VERSION)
self._deprecated_runtimes = DEPRECATED_RUNTIMES
self._colored = Colored()
self._container_env_var = container_env_var
self._container_env_var_file = container_env_var_file
self._build_images = build_images or {}
self._combine_dependencies = combine_dependencies
self._build_in_source = build_in_source
self._mount_with_write = mount_with_write
self._mount_symlinks = mount_symlinks
def build(self) -> ApplicationBuildResult:
"""
Build the entire application
Returns
-------
ApplicationBuildResult
Returns the build graph and the path to where each resource was built as a map of resource's LogicalId
to the path string
"""
build_graph = self._get_build_graph(self._container_env_var, self._container_env_var_file)
build_strategy: BuildStrategy = DefaultBuildStrategy(
build_graph, self._build_dir, self._build_function, self._build_layer, self._cached
)
if self._parallel:
if self._cached:
build_strategy = ParallelBuildStrategy(
build_graph,
CachedOrIncrementalBuildStrategyWrapper(
build_graph,
build_strategy,
self._base_dir,
self._build_dir,
self._cache_dir,
self._manifest_path_override,
self._is_building_specific_resource,
bool(self._container_manager),
),
)
else:
build_strategy = ParallelBuildStrategy(build_graph, build_strategy)
elif self._cached:
build_strategy = CachedOrIncrementalBuildStrategyWrapper(
build_graph,
build_strategy,
self._base_dir,
self._build_dir,
self._cache_dir,
self._manifest_path_override,
self._is_building_specific_resource,
bool(self._container_manager),
)
return ApplicationBuildResult(build_graph, build_strategy.build())
def _get_build_graph(
self, inline_env_vars: Optional[Dict] = None, env_vars_file: Optional[str] = None
) -> BuildGraph:
"""
Converts list of functions and layers into a build graph, where we can iterate on each unique build and trigger
build
:return: BuildGraph, which represents list of unique build definitions
"""
build_graph = BuildGraph(self._build_dir)
functions = self._resources_to_build.functions
layers = self._resources_to_build.layers
file_env_vars = {}
if env_vars_file:
try:
with open(env_vars_file, "r", encoding="utf-8") as fp:
file_env_vars = json.load(fp)
except Exception as ex:
raise IOError(
"Could not read environment variables overrides from file {}: {}".format(env_vars_file, str(ex))
) from ex
for function in functions:
container_env_vars = _make_env_vars(function, file_env_vars, inline_env_vars)
function_build_details = FunctionBuildDefinition(
function.runtime,
function.codeuri,
function.imageuri,
function.packagetype,
function.architecture,
function.metadata,
function.handler,
env_vars=container_env_vars,
)
build_graph.put_function_build_definition(function_build_details, function)
for layer in layers:
container_env_vars = _make_env_vars(layer, file_env_vars, inline_env_vars)
layer_build_details = LayerBuildDefinition(
layer.full_path,
layer.codeuri,
layer.build_method,
layer.compatible_runtimes,
layer.build_architecture,
env_vars=container_env_vars,
)
build_graph.put_layer_build_definition(layer_build_details, layer)
build_graph.clean_redundant_definitions_and_update(not self._is_building_specific_resource)
return build_graph
@staticmethod
def update_template(
stack: Stack,
built_artifacts: Dict[str, str],
stack_output_template_path_by_stack_path: Dict[str, str],
) -> Dict:
"""
Given the path to built artifacts, update the template to point appropriate resource CodeUris to the artifacts
folder
Parameters
----------
stack: Stack
The stack object representing the template
built_artifacts : dict
Map of LogicalId of a resource to the path where the the built artifacts for this resource lives
stack_output_template_path_by_stack_path: Dict[str, str]
A dictionary contains where the template of each stack will be written to
Returns
-------
dict
Updated template
"""
original_dir = pathlib.Path(stack.location).parent.resolve()
template_dict = stack.template_dict
normalized_resources = stack.resources
for logical_id, resource in template_dict.get("Resources", {}).items():
resource_iac_id = ResourceMetadataNormalizer.get_resource_id(resource, logical_id)
full_path = get_full_path(stack.stack_path, resource_iac_id)
has_build_artifact = full_path in built_artifacts
is_stack = full_path in stack_output_template_path_by_stack_path
if not has_build_artifact and not is_stack:
# this resource was not built or a nested stack.
# So skip it because there is no path/uri to update
continue
# clone normalized metadata from stack.resources only to built resources
normalized_metadata = normalized_resources.get(logical_id, {}).get("Metadata")
if normalized_metadata:
resource["Metadata"] = normalized_metadata
resource_type = resource.get("Type")
properties = resource.setdefault("Properties", {})
absolute_output_path = pathlib.Path(
built_artifacts[full_path]
if has_build_artifact
else stack_output_template_path_by_stack_path[full_path]
).resolve()
# Default path to absolute path of the artifact
store_path = str(absolute_output_path)
# In Windows, if template and artifacts are in two different drives, relpath will fail
if original_dir.drive == absolute_output_path.drive:
# Artifacts are written relative the template because it makes the template portable
# Ex: A CI/CD pipeline build stage could zip the output folder and pass to a
# package stage running on a different machine
store_path = os.path.relpath(absolute_output_path, original_dir)
if has_build_artifact:
ApplicationBuilder._update_built_resource(
built_artifacts[full_path], properties, resource_type, store_path
)
if is_stack:
if resource_type == AWS_SERVERLESS_APPLICATION:
properties["Location"] = store_path
if resource_type == AWS_CLOUDFORMATION_STACK:
properties["TemplateURL"] = store_path
return template_dict
@staticmethod
def _update_built_resource(path: str, resource_properties: Dict, resource_type: str, absolute_path: str) -> None:
if resource_type == AWS_SERVERLESS_FUNCTION and resource_properties.get("PackageType", ZIP) == ZIP:
resource_properties["CodeUri"] = absolute_path
if resource_type == AWS_LAMBDA_FUNCTION and resource_properties.get("PackageType", ZIP) == ZIP:
resource_properties["Code"] = absolute_path
if resource_type == AWS_LAMBDA_LAYERVERSION:
resource_properties["Content"] = absolute_path
if resource_type == AWS_SERVERLESS_LAYERVERSION:
resource_properties["ContentUri"] = absolute_path
if resource_type == AWS_LAMBDA_FUNCTION and resource_properties.get("PackageType", ZIP) == IMAGE:
resource_properties["Code"] = {"ImageUri": path}
if resource_type == AWS_SERVERLESS_FUNCTION and resource_properties.get("PackageType", ZIP) == IMAGE:
resource_properties["ImageUri"] = path
def _build_lambda_image(self, function_name: str, metadata: Dict, architecture: str) -> str:
"""
Build an Lambda image
Parameters
----------
function_name str
Name of the function (logical id or function name)
metadata dict
Dictionary representing the Metadata attached to the Resource in the template
architecture : str
The architecture type 'x86_64' and 'arm64' in AWS
Returns
-------
str
The full tag (org/repo:tag) of the image that was built
"""
LOG.info("Building image for %s function", function_name)
dockerfile = cast(str, metadata.get("Dockerfile"))
docker_context = cast(str, metadata.get("DockerContext"))
# Have a default tag if not present.
tag = metadata.get("DockerTag", "latest")
docker_tag = f"{function_name.lower()}:{tag}"
docker_build_target = metadata.get("DockerBuildTarget", None)
docker_build_args = metadata.get("DockerBuildArgs", {})
if not dockerfile or not docker_context:
raise DockerBuildFailed("Docker file or Docker context metadata are missed.")
if not isinstance(docker_build_args, dict):
raise DockerBuildFailed("DockerBuildArgs needs to be a dictionary!")
docker_context_dir = pathlib.Path(self._base_dir, docker_context).resolve()
if not is_docker_reachable(self._docker_client):
raise DockerConnectionError(msg=f"Building image for {function_name} requires Docker. is Docker running?")
if os.environ.get("SAM_BUILD_MODE") and isinstance(docker_build_args, dict):
docker_build_args["SAM_BUILD_MODE"] = os.environ.get("SAM_BUILD_MODE")
docker_tag = "-".join([docker_tag, docker_build_args["SAM_BUILD_MODE"]])
if isinstance(docker_build_args, dict):
LOG.info("Setting DockerBuildArgs for %s function", function_name)
build_args = {
"path": str(docker_context_dir),
"dockerfile": str(pathlib.Path(dockerfile).as_posix()),
"tag": docker_tag,
"buildargs": docker_build_args,
"platform": get_docker_platform(architecture),
"rm": True,
}
if docker_build_target:
build_args["target"] = cast(str, docker_build_target)
try:
(build_image, build_logs) = self._docker_client.images.build(**build_args)
LOG.debug("%s image is built for %s function", build_image, function_name)
except docker.errors.BuildError as ex:
LOG.error("Failed building function %s", function_name)
self._stream_lambda_image_build_logs(ex.build_log, function_name, False)
raise DockerBuildFailed(str(ex)) from ex
# The Docker-py low level api will stream logs back but if an exception is raised by the api
# this is raised when accessing the generator. So we need to wrap accessing build_logs in a try: except.
try:
self._stream_lambda_image_build_logs(build_logs, function_name)
except docker.errors.APIError as e:
if e.is_server_error and "Cannot locate specified Dockerfile" in e.explanation:
raise DockerfileOutSideOfContext(e.explanation) from e
# Not sure what else can be raise that we should be catching but re-raising for now
raise
return docker_tag
def _stream_lambda_image_build_logs(
self, build_logs: List[Dict[str, str]], function_name: str, throw_on_error: bool = True
) -> None:
"""
Stream logs to the console from an Lambda image build.
Parameters
----------
build_logs generator
A generator for the build output.
function_name str
Name of the function that is being built
"""
build_log_streamer = LogStreamer(self._stream_writer, throw_on_error)
try:
build_log_streamer.stream_progress(build_logs)
except LogStreamError as ex:
raise DockerBuildFailed(msg=f"{function_name} failed to build: {str(ex)}") from ex
def _load_lambda_image(self, image_archive_path: str) -> str:
try:
with open(image_archive_path, mode="rb") as image_archive:
[image, *rest] = self._docker_client.images.load(image_archive)
if len(rest) != 0:
raise DockerBuildFailed("Archive must represent a single image")
return f"{image.id}"
except (docker.errors.APIError, OSError) as ex:
raise DockerBuildFailed(msg=str(ex)) from ex
def _build_layer(
self,
layer_name: str,
codeuri: str,
specified_workflow: str,
compatible_runtimes: List[str],
architecture: str,
artifact_dir: str,
container_env_vars: Optional[Dict] = None,
dependencies_dir: Optional[str] = None,
download_dependencies: bool = True,
layer_metadata: Optional[Dict] = None,
) -> str:
"""
Given the layer information, this method will build the Lambda layer. Depending on the configuration
it will either build the function in process or by spinning up a Docker container.
Parameters
----------
layer_name : str
Name or LogicalId of the function
codeuri : str
Path to where the code lives
specified_workflow : str
The specified workflow
compatible_runtimes : List[str]
List of runtimes the layer build is compatible with
architecture : str
The architecture type 'x86_64' and 'arm64' in AWS
artifact_dir : str
Path to where layer will be build into.
A subfolder will be created in this directory depending on the specified workflow.
container_env_vars : Optional[Dict]
An optional dictionary of environment variables to pass to the container.
dependencies_dir: Optional[str]
An optional string parameter which will be used in lambda builders for downloading dependencies into
separate folder
download_dependencies: bool
An optional boolean parameter to inform lambda builders whether download dependencies or use previously
downloaded ones. Default value is True.
layer_metadata: Optional[Dict]
An optional dictionary that contain the layer version metadata information.
Returns
-------
str
Path to the location where built artifacts are available
"""
# Create the arguments to pass to the builder
# Code is always relative to the given base directory.
code_dir = str(pathlib.Path(self._base_dir, codeuri).resolve())
config = get_workflow_config(None, code_dir, self._base_dir, specified_workflow)
subfolder = get_layer_subfolder(specified_workflow)
if (
config.language == "provided"
and isinstance(layer_metadata, dict)
and layer_metadata.get("ProjectRootDirectory")
):
code_dir = str(pathlib.Path(self._base_dir, layer_metadata.get("ProjectRootDirectory", code_dir)).resolve())
# artifacts directory will be created by the builder
artifact_subdir = str(pathlib.Path(artifact_dir, subfolder))
with osutils.mkdir_temp() as scratch_dir:
manifest_context_path = code_dir
if config.language == "provided" and isinstance(layer_metadata, dict) and layer_metadata.get("ContextPath"):
manifest_context_path = str(
pathlib.Path(self._base_dir, layer_metadata.get("ContextPath", code_dir)).resolve()
)
manifest_path = self._manifest_path_override or os.path.join(manifest_context_path, config.manifest_name)
# By default prefer to build in-process for speed
scratch_dir_path = (
LambdaBuildContainer.get_container_dirs(code_dir, manifest_path)["scratch_dir"]
if self._container_manager
else scratch_dir
)
build_runtime = specified_workflow
options = ApplicationBuilder._get_build_options(
layer_name,
config.language,
self._base_dir,
None,
metadata=layer_metadata,
source_code_path=code_dir,
scratch_dir=scratch_dir_path,
)
if self._container_manager:
# None key represents the global build image for all functions/layers
if config.language == "provided":
LOG.warning(
"For container layer build, first compatible runtime is chosen as build target for container."
)
# Only set to this value if specified workflow is makefile
# which will result in config language as provided
build_runtime = (
compatible_runtimes[FIRST_COMPATIBLE_RUNTIME_INDEX] if compatible_runtimes else config.language
)
global_image = self._build_images.get(None)
image = self._build_images.get(layer_name, global_image)
# pass to container only when specified workflow is supported to overwrite runtime to get image
supported_specified_workflow = supports_specified_workflow(specified_workflow)
self._build_function_on_container(
config,
code_dir,
artifact_subdir,
manifest_path,
build_runtime,
architecture,
options,
container_env_vars,
image,
is_building_layer=True,
specified_workflow=specified_workflow if supported_specified_workflow else None,
)
else:
self._build_function_in_process(
config,
code_dir,
artifact_subdir,
scratch_dir,
manifest_path,
build_runtime,
architecture,
options,
dependencies_dir,
download_dependencies,
True, # dependencies for layer should always be combined
is_building_layer=True,
)
# Not including subfolder in return so that we copy subfolder, instead of copying artifacts inside it.
return artifact_dir
def _build_function( # pylint: disable=R1710
self,
function_name: str,
codeuri: str,
imageuri: Optional[str],
packagetype: str,
runtime: str,
architecture: str,
handler: Optional[str],
artifact_dir: str,
metadata: Optional[Dict] = None,
container_env_vars: Optional[Dict] = None,
dependencies_dir: Optional[str] = None,
download_dependencies: bool = True,
) -> str:
"""
Given the function information, this method will build the Lambda function. Depending on the configuration
it will either build the function in process or by spinning up a Docker container.
Parameters
----------
function_name : str
Name or LogicalId of the function
codeuri : str
Path to where the code lives
imageuri : str
Location of the Lambda Image which is of the form {image}:{tag}, sha256:{digest},
or a path to a local archive
packagetype : str
The package type, 'Zip' or 'Image', see samcli/lib/utils/packagetype.py
runtime : str
AWS Lambda function runtime
architecture : str
The architecture type 'x86_64' and 'arm64' in AWS
handler : Optional[str]
An optional string to specify which function the handler should be
artifact_dir: str
Path to where function will be build into
metadata : dict
AWS Lambda function metadata
container_env_vars : Optional[Dict]
An optional dictionary of environment variables to pass to the container.
dependencies_dir: Optional[str]
An optional string parameter which will be used in lambda builders for downloading dependencies into
separate folder
download_dependencies: bool
An optional boolean parameter to inform lambda builders whether download dependencies or use previously
downloaded ones. Default value is True.
Returns
-------
str
Path to the location where built artifacts are available
"""
if packagetype == IMAGE:
if (
imageuri and check_path_valid_type(imageuri) and Path(imageuri).is_file()
): # something exists at this path and what exists is a file
return self._load_lambda_image(imageuri) # should be an image archive – load it instead of building it
# pylint: disable=fixme
# FIXME: _build_lambda_image assumes metadata is not None, we need to throw an exception here
return self._build_lambda_image(
function_name=function_name, metadata=metadata, architecture=architecture # type: ignore
)
if packagetype == ZIP:
if runtime in self._deprecated_runtimes:
message = (
f"Building functions with {runtime} is no longer supported by AWS SAM CLI, please "
f"update to a newer supported runtime. For more information please check AWS Lambda Runtime "
f"Support Policy: https://docs.aws.amazon.com/lambda/latest/dg/runtime-support-policy.html"
)
LOG.warning(self._colored.color_log(msg=message, color=Colors.WARNING), extra=dict(markup=True))
raise UnsupportedRuntimeException(f"Building functions with {runtime} is no longer supported")
# Create the arguments to pass to the builder
# Code is always relative to the given base directory.
code_dir = str(pathlib.Path(self._base_dir, codeuri).resolve())
# Determine if there was a build workflow that was specified directly in the template.
specified_workflow = metadata.get("BuildMethod", None) if metadata else None
config = get_workflow_config(runtime, code_dir, self._base_dir, specified_workflow=specified_workflow)
if config.language == "provided" and isinstance(metadata, dict) and metadata.get("ProjectRootDirectory"):
code_dir = str(pathlib.Path(self._base_dir, metadata.get("ProjectRootDirectory", code_dir)).resolve())
with osutils.mkdir_temp() as scratch_dir:
manifest_context_path = code_dir
if config.language == "provided" and isinstance(metadata, dict) and metadata.get("ContextPath"):
manifest_context_path = str(
pathlib.Path(self._base_dir, metadata.get("ContextPath", code_dir)).resolve()
)
manifest_path = self._manifest_path_override or os.path.join(
manifest_context_path, config.manifest_name
)
scratch_dir_path = (
LambdaBuildContainer.get_container_dirs(code_dir, manifest_path)["scratch_dir"]
if self._container_manager
else scratch_dir
)
options = ApplicationBuilder._get_build_options(
function_name,
config.language,
self._base_dir,
handler,
config.dependency_manager,
metadata,
source_code_path=code_dir,
scratch_dir=scratch_dir_path,
)
# By default prefer to build in-process for speed
if self._container_manager:
# None represents the global build image for all functions/layers
global_image = self._build_images.get(None)
image = self._build_images.get(function_name, global_image)
# pass to container only when specified workflow is supported to overwrite runtime to get image
supported_specified_workflow = supports_specified_workflow(specified_workflow)
return self._build_function_on_container(
config,
code_dir,
artifact_dir,
manifest_path,
runtime,
architecture,
options,
container_env_vars,
image,
specified_workflow=specified_workflow if supported_specified_workflow else None,
)
return self._build_function_in_process(
config,
code_dir,
artifact_dir,
scratch_dir,
manifest_path,
runtime,
architecture,
options,
dependencies_dir,
download_dependencies,
self._combine_dependencies,
)
# pylint: disable=fixme
# FIXME: we need to throw an exception here, packagetype could be something else
return # type: ignore
@staticmethod
def _get_build_options(
function_name: str,
language: str,
base_dir: str,
handler: Optional[str],
dependency_manager: Optional[str] = None,
metadata: Optional[dict] = None,
source_code_path: Optional[str] = None,
scratch_dir: Optional[str] = None,
) -> Optional[Dict]:
"""
Parameters
----------
function_name str
current function resource name
language str
language of the runtime
base_dir str
Path to a folder. Use this folder as the root to resolve relative source code paths against
handler str
Handler value of the Lambda Function Resource
dependency_manager str
Dependency manager to check in addition to language
metadata Dict
Metadata object to search for build properties
source_code_path str
The lambda function source code path that will be used to calculate the working directory
scratch_dir str
The temporary directory path where the lambda function code will be copied to.
Returns
-------
dict
Dictionary that represents the options to pass to the builder workflow or None if options are not needed
"""
build_props = {}
if metadata and isinstance(metadata, dict):
build_props = metadata.get(BUILD_PROPERTIES, {})
if metadata and dependency_manager and dependency_manager == "npm-esbuild":
# Esbuild takes an array of entry points from which to start bundling
# as a required argument. This corresponds to the lambda function handler.
normalized_build_props = ResourceMetadataNormalizer.normalize_build_properties(build_props)
if handler and not build_props.get("EntryPoints"):
entry_points = [handler.split(".")[0]]
normalized_build_props["entry_points"] = entry_points
return normalized_build_props
_build_options: Dict[str, Dict] = {
"go": {
"artifact_executable_name": handler,
"trim_go_path": build_props.get("TrimGoPath", False),
},
"provided": {"build_logical_id": function_name},
"nodejs": {"use_npm_ci": build_props.get("UseNpmCi", False)},
}
options = _build_options.get(language, None)
if language == "provided":
options = options if options else {}
working_directory = ApplicationBuilder._get_working_directory_path(
base_dir, metadata, source_code_path, scratch_dir
)
if working_directory:
options = {**options, "working_directory": convert_path_to_unix_path(working_directory)}
if language == "rust" and "Binary" in build_props:
options = options if options else {}
options["artifact_executable_name"] = build_props["Binary"]
return options
@staticmethod
def _get_working_directory_path(
base_dir: str, metadata: Optional[Dict], source_code_path: Optional[str], scratch_dir: Optional[str]
) -> Optional[str]:
"""
Get the working directory from the lambda resource metadata information, and check if it is not None, and it
is a child path to the source directory path, then return the working directory as a child to the scratch
directory.
Parameters
----------
base_dir : str
Path to a folder. Use this folder as the root to resolve relative source code paths against
metadata Dict
Lambda resource metadata object to search for build properties
source_code_path str
The lambda resource source code path that will be used to calculate the working directory
scratch_dir str
The temporary directory path where the lambda resource code will be copied to.
Returns
-------
str
The working directory path or None if there is no working_dir metadata info.
"""
working_directory = None
if metadata and isinstance(metadata, dict):
working_directory = metadata.get("WorkingDirectory")
if working_directory:
working_directory = str(pathlib.Path(base_dir, working_directory).resolve())
# check if the working directory is a child of the lambda resource source code path, to update the
# working directory to be child of the scratch directory
if (
source_code_path
and scratch_dir
and os.path.commonpath([source_code_path, working_directory]) == os.path.normpath(source_code_path)
):
working_directory = os.path.relpath(working_directory, source_code_path)
working_directory = os.path.normpath(os.path.join(scratch_dir, working_directory))
return working_directory
def _build_function_in_process(
self,
config: CONFIG,
source_dir: str,
artifacts_dir: str,
scratch_dir: str,
manifest_path: str,
runtime: str,
architecture: str,
options: Optional[Dict],
dependencies_dir: Optional[str],
download_dependencies: bool,
combine_dependencies: bool,
is_building_layer: bool = False,
) -> str:
builder = LambdaBuilder(
language=config.language,
dependency_manager=config.dependency_manager,
application_framework=config.application_framework,
)
runtime_patched = patch_runtime(runtime)
try:
builder.build(
source_dir,
artifacts_dir,
scratch_dir,
manifest_path,
runtime=runtime_patched,
unpatched_runtime=runtime,
executable_search_paths=config.executable_search_paths,
mode=self._mode,
options=options,
architecture=architecture,
dependencies_dir=dependencies_dir,
download_dependencies=download_dependencies,
combine_dependencies=combine_dependencies,
is_building_layer=is_building_layer,
experimental_flags=get_enabled_experimental_flags(),
build_in_source=self._build_in_source,
)
except LambdaBuilderError as ex:
raise BuildError(wrapped_from=ex.__class__.__name__, msg=str(ex)) from ex
return artifacts_dir
def _build_function_on_container(
self, # pylint: disable=too-many-locals
config: CONFIG,
source_dir: str,
artifacts_dir: str,
manifest_path: str,
runtime: str,
architecture: str,
options: Optional[Dict],
container_env_vars: Optional[Dict] = None,
build_image: Optional[str] = None,
is_building_layer: bool = False,
specified_workflow: Optional[str] = None,
) -> str:
# _build_function_on_container() is only called when self._container_manager if not None
if not self._container_manager:
raise RuntimeError("_build_function_on_container() is called when self._container_manager is None.")
if not self._container_manager.is_docker_reachable:
raise BuildInsideContainerError(
"Docker is unreachable. Docker needs to be running to build inside a container."
)
# If we are printing debug logs in SAM CLI, the builder library should also print debug logs
log_level = LOG.getEffectiveLevel()
container_env_vars = container_env_vars or {}
container = LambdaBuildContainer(
lambda_builders_protocol_version,
config.language,
config.dependency_manager,
config.application_framework,
source_dir,
manifest_path,
runtime,
architecture,
specified_workflow=specified_workflow,
log_level=log_level,
optimizations=None,
options=options,
executable_search_paths=config.executable_search_paths,
mode=self._mode,
env_vars=container_env_vars,
image=build_image,
is_building_layer=is_building_layer,
build_in_source=self._build_in_source,
mount_with_write=self._mount_with_write,
build_dir=self._build_dir,
mount_symlinks=self._mount_symlinks,
)
try:
try:
self._container_manager.run(container, context=ContainerContext.BUILD)
except docker.errors.APIError as ex:
if "executable file not found in $PATH" in str(ex):
raise UnsupportedBuilderLibraryVersionError(
container.image, "{} executable not found in container".format(container.executable_name)
) from ex
# Container's output provides status of whether the build succeeded or failed
# stdout contains the result of JSON-RPC call
stdout_stream = io.BytesIO()
# stderr contains logs printed by the builder. Stream it directly to terminal
stderr_stream = osutils.stderr()
container.wait_for_logs(stdout=stdout_stream, stderr=stderr_stream)
stdout_data = stdout_stream.getvalue().decode("utf-8")
LOG.debug("Build inside container returned response %s", stdout_data)
response = self._parse_builder_response(stdout_data, container.image)
# Request is successful. Now copy the artifacts back to the host
LOG.debug("Build inside container was successful. Copying artifacts from container to host")
# "/." is a Docker thing that instructions the copy command to download contents of the folder only
result_dir_in_container = response["result"]["artifacts_dir"] + "/."
container.copy(result_dir_in_container, artifacts_dir)
except DockerImagePullFailedException as ex:
raise BuildInsideContainerError(ex)
finally:
self._container_manager.stop(container)
LOG.debug("Build inside container succeeded")
return artifacts_dir
@staticmethod
def _parse_builder_response(stdout_data: str, image_name: str) -> Dict:
try:
response = json.loads(stdout_data)
except Exception:
# Invalid JSON is produced as an output only when the builder process crashed for some reason.
# Report this as a crash
LOG.error("Builder crashed: %s", stdout_data)
raise
if "error" in response:
error = response.get("error", {})
err_code = error.get("code")
msg = error.get("message")
if HTTP_400 <= err_code < HTTP_500:
# Like HTTP 4xx - customer error
raise BuildInsideContainerError(msg)
if err_code == HTTP_505:
# Like HTTP 505 error code: Version of the protocol is not supported
# In this case, this error means that the Builder Library within the container is
# not compatible with the version of protocol expected SAM CLI installation supports.
# This can happen when customers have a newer container image or an older SAM CLI version.
# https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/505
raise UnsupportedBuilderLibraryVersionError(image_name, msg)
if err_code == JSON_RPC_CODE:
# Default JSON Rpc Code for Method Unavailable https://www.jsonrpc.org/specification
# This can happen if customers are using an incompatible version of builder library within the
# container
LOG.debug("Builder library does not support the supplied method")
raise UnsupportedBuilderLibraryVersionError(image_name, msg)
LOG.debug("Builder crashed")
raise ValueError(msg)
return cast(Dict, response)