awswrangler/mysql.py (311 lines of code) (raw):
"""Amazon MySQL Module."""
from __future__ import annotations
import logging
import uuid
from typing import TYPE_CHECKING, Any, Iterator, Literal, cast, overload
import boto3
import pyarrow as pa
import awswrangler.pandas as pd
from awswrangler import _data_types, _utils, exceptions
from awswrangler import _databases as _db_utils
from awswrangler._config import apply_configs
from awswrangler._sql_utils import identifier
if TYPE_CHECKING:
try:
import pymysql
from pymysql.cursors import Cursor
except ImportError:
pass
else:
pymysql = _utils.import_optional_dependency("pymysql")
_logger: logging.Logger = logging.getLogger(__name__)
def _validate_connection(con: "pymysql.connections.Connection[Any]") -> None:
if not isinstance(con, pymysql.connections.Connection):
raise exceptions.InvalidConnection(
"Invalid 'conn' argument, please pass a "
"pymysql.connections.Connection object. Use pymysql.connect() to use "
"credentials directly or wr.mysql.connect() to fetch it from the Glue Catalog."
)
def _drop_table(cursor: "Cursor", schema: str | None, table: str) -> None:
schema_str = f"{identifier(schema)}." if schema else ""
sql = f"DROP TABLE IF EXISTS {schema_str}{identifier(table)}"
_logger.debug("Drop table query:\n%s", sql)
cursor.execute(sql)
def _does_table_exist(cursor: "Cursor", schema: str | None, table: str) -> bool:
if schema:
cursor.execute(
"SELECT * FROM INFORMATION_SCHEMA.TABLES WHERE TABLE_SCHEMA = %s AND TABLE_NAME = %s", args=[schema, table]
)
else:
cursor.execute("SELECT * FROM INFORMATION_SCHEMA.TABLES WHERE TABLE_NAME = %s", args=[table])
return len(cursor.fetchall()) > 0
def _create_table(
df: pd.DataFrame,
cursor: "Cursor",
table: str,
schema: str,
mode: str,
index: bool,
dtype: dict[str, str] | None,
varchar_lengths: dict[str, int] | None,
) -> None:
if mode == "overwrite":
_drop_table(cursor=cursor, schema=schema, table=table)
elif _does_table_exist(cursor=cursor, schema=schema, table=table):
return
mysql_types: dict[str, str] = _data_types.database_types_from_pandas(
df=df,
index=index,
dtype=dtype,
varchar_lengths_default="TEXT",
varchar_lengths=varchar_lengths,
converter_func=_data_types.pyarrow2mysql,
)
cols_str: str = "".join([f"{identifier(k)} {v},\n" for k, v in mysql_types.items()])[:-2]
sql = f"CREATE TABLE IF NOT EXISTS {identifier(schema)}.{identifier(table)} (\n{cols_str})"
_logger.debug("Create table query:\n%s", sql)
cursor.execute(sql)
@_utils.check_optional_dependency(pymysql, "pymysql")
def connect(
connection: str | None = None,
secret_id: str | None = None,
catalog_id: str | None = None,
dbname: str | None = None,
boto3_session: boto3.Session | None = None,
read_timeout: int | None = None,
write_timeout: int | None = None,
connect_timeout: int = 10,
cursorclass: type["Cursor"] | None = None,
) -> "pymysql.connections.Connection": # type: ignore[type-arg]
"""Return a pymysql connection from a Glue Catalog Connection or Secrets Manager.
https://pymysql.readthedocs.io
Note
----
You MUST pass a `connection` OR `secret_id`.
Here is an example of the secret structure in Secrets Manager:
{
"host":"mysql-instance-wrangler.dr8vkeyrb9m1.us-east-1.rds.amazonaws.com",
"username":"test",
"password":"test",
"engine":"mysql",
"port":"3306",
"dbname": "mydb" # Optional
}
Note
----
It is only possible to configure SSL using Glue Catalog Connection. More at:
https://docs.aws.amazon.com/glue/latest/dg/connection-defining.html
Note
----
Consider using SSCursor `cursorclass` for queries that return a lot of data. More at:
https://pymysql.readthedocs.io/en/latest/modules/cursors.html#pymysql.cursors.SSCursor
Parameters
----------
connection
Glue Catalog Connection name.
secret_id
Specifies the secret containing the connection details that you want to retrieve.
You can specify either the Amazon Resource Name (ARN) or the friendly name of the secret.
catalog_id
The ID of the Data Catalog.
If none is provided, the AWS account ID is used by default.
dbname
Optional database name to overwrite the stored one.
boto3_session
The default boto3 session will be used if **boto3_session** is ``None``.
read_timeout
The timeout for reading from the connection in seconds (default: None - no timeout).
This parameter is forward to pymysql.
https://pymysql.readthedocs.io/en/latest/modules/connections.html
write_timeout
The timeout for writing to the connection in seconds (default: None - no timeout)
This parameter is forward to pymysql.
https://pymysql.readthedocs.io/en/latest/modules/connections.html
connect_timeout
Timeout before throwing an exception when connecting.
(default: 10, min: 1, max: 31536000)
This parameter is forward to pymysql.
https://pymysql.readthedocs.io/en/latest/modules/connections.html
cursorclass
Cursor class to use, e.g. SSCursor; defaults to :class:`pymysql.cursors.Cursor`
https://pymysql.readthedocs.io/en/latest/modules/cursors.html
Returns
-------
pymysql connection.
Examples
--------
>>> import awswrangler as wr
>>> with wr.mysql.connect("MY_GLUE_CONNECTION") as con:
... with con.cursor() as cursor:
... cursor.execute("SELECT 1")
... print(cursor.fetchall())
"""
attrs: _db_utils.ConnectionAttributes = _db_utils.get_connection_attributes(
connection=connection, secret_id=secret_id, catalog_id=catalog_id, dbname=dbname, boto3_session=boto3_session
)
if attrs.kind != "mysql":
raise exceptions.InvalidDatabaseType(f"Invalid connection type ({attrs.kind}. It must be a MySQL connection.)")
return pymysql.connect(
user=attrs.user,
database=attrs.database,
password=attrs.password,
port=attrs.port,
host=attrs.host,
ssl=attrs.ssl_context, # type: ignore[arg-type]
read_timeout=read_timeout,
write_timeout=write_timeout,
connect_timeout=connect_timeout,
cursorclass=cursorclass or pymysql.cursors.Cursor,
)
@overload
def read_sql_query(
sql: str,
con: "pymysql.connections.Connection[Any]",
index_col: str | list[str] | None = ...,
params: list[Any] | tuple[Any, ...] | dict[Any, Any] | None = ...,
chunksize: None = ...,
dtype: dict[str, pa.DataType] | None = ...,
safe: bool = ...,
timestamp_as_object: bool = ...,
dtype_backend: Literal["numpy_nullable", "pyarrow"] = ...,
) -> pd.DataFrame: ...
@overload
def read_sql_query(
sql: str,
con: "pymysql.connections.Connection[Any]",
*,
index_col: str | list[str] | None = ...,
params: list[Any] | tuple[Any, ...] | dict[Any, Any] | None = ...,
chunksize: int,
dtype: dict[str, pa.DataType] | None = ...,
safe: bool = ...,
timestamp_as_object: bool = ...,
dtype_backend: Literal["numpy_nullable", "pyarrow"] = ...,
) -> Iterator[pd.DataFrame]: ...
@overload
def read_sql_query(
sql: str,
con: "pymysql.connections.Connection[Any]",
*,
index_col: str | list[str] | None = ...,
params: list[Any] | tuple[Any, ...] | dict[Any, Any] | None = ...,
chunksize: int | None,
dtype: dict[str, pa.DataType] | None = ...,
safe: bool = ...,
timestamp_as_object: bool = ...,
dtype_backend: Literal["numpy_nullable", "pyarrow"] = ...,
) -> pd.DataFrame | Iterator[pd.DataFrame]: ...
@_utils.check_optional_dependency(pymysql, "pymysql")
def read_sql_query(
sql: str,
con: "pymysql.connections.Connection", # type: ignore[type-arg]
index_col: str | list[str] | None = None,
params: list[Any] | tuple[Any, ...] | dict[Any, Any] | None = None,
chunksize: int | None = None,
dtype: dict[str, pa.DataType] | None = None,
safe: bool = True,
timestamp_as_object: bool = False,
dtype_backend: Literal["numpy_nullable", "pyarrow"] = "numpy_nullable",
) -> pd.DataFrame | Iterator[pd.DataFrame]:
"""Return a DataFrame corresponding to the result set of the query string.
Parameters
----------
sql
SQL query.
con
Use pymysql.connect() to use credentials directly or wr.mysql.connect() to fetch it from the Glue Catalog.
index_col
Column(s) to set as index(MultiIndex).
params
List of parameters to pass to execute method.
The syntax used to pass parameters is database driver dependent.
Check your database driver documentation for which of the five syntax styles,
described in PEP 249’s paramstyle, is supported.
chunksize
If specified, return an iterator where chunksize is the number of rows to include in each chunk.
dtype
Specifying the datatype for columns.
The keys should be the column names and the values should be the PyArrow types.
safe
Check for overflows or other unsafe data type conversions.
timestamp_as_object
Cast non-nanosecond timestamps (np.datetime64) to objects.
dtype_backend
Which dtype_backend to use, e.g. whether a DataFrame should have NumPy arrays,
nullable dtypes are used for all dtypes that have a nullable implementation when
“numpy_nullable” is set, pyarrow is used for all dtypes if “pyarrow” is set.
The dtype_backends are still experimential. The "pyarrow" backend is only supported with Pandas 2.0 or above.
Returns
-------
Result as Pandas DataFrame(s).
Examples
--------
Reading from MySQL using a Glue Catalog Connections
>>> import awswrangler as wr
>>> with wr.mysql.connect("MY_GLUE_CONNECTION") as con:
... df = wr.mysql.read_sql_query(
... sql="SELECT * FROM test.my_table",
... con=con,
... )
"""
_validate_connection(con=con)
return _db_utils.read_sql_query(
sql=sql,
con=con,
index_col=index_col,
params=params,
chunksize=chunksize,
dtype=dtype,
safe=safe,
timestamp_as_object=timestamp_as_object,
dtype_backend=dtype_backend,
)
@overload
def read_sql_table(
table: str,
con: "pymysql.connections.Connection[Any]",
schema: str | None = ...,
index_col: str | list[str] | None = ...,
params: list[Any] | tuple[Any, ...] | dict[Any, Any] | None = ...,
chunksize: None = ...,
dtype: dict[str, pa.DataType] | None = ...,
safe: bool = ...,
timestamp_as_object: bool = ...,
dtype_backend: Literal["numpy_nullable", "pyarrow"] = ...,
) -> pd.DataFrame: ...
@overload
def read_sql_table(
table: str,
con: "pymysql.connections.Connection[Any]",
*,
schema: str | None = ...,
index_col: str | list[str] | None = ...,
params: list[Any] | tuple[Any, ...] | dict[Any, Any] | None = ...,
chunksize: int,
dtype: dict[str, pa.DataType] | None = ...,
safe: bool = ...,
timestamp_as_object: bool = ...,
dtype_backend: Literal["numpy_nullable", "pyarrow"] = ...,
) -> Iterator[pd.DataFrame]: ...
@overload
def read_sql_table(
table: str,
con: "pymysql.connections.Connection[Any]",
*,
schema: str | None = ...,
index_col: str | list[str] | None = ...,
params: list[Any] | tuple[Any, ...] | dict[Any, Any] | None = ...,
chunksize: int | None,
dtype: dict[str, pa.DataType] | None = ...,
safe: bool = ...,
timestamp_as_object: bool = ...,
dtype_backend: Literal["numpy_nullable", "pyarrow"] = ...,
) -> pd.DataFrame | Iterator[pd.DataFrame]: ...
@_utils.check_optional_dependency(pymysql, "pymysql")
def read_sql_table(
table: str,
con: "pymysql.connections.Connection", # type: ignore[type-arg]
schema: str | None = None,
index_col: str | list[str] | None = None,
params: list[Any] | tuple[Any, ...] | dict[Any, Any] | None = None,
chunksize: int | None = None,
dtype: dict[str, pa.DataType] | None = None,
safe: bool = True,
timestamp_as_object: bool = False,
dtype_backend: Literal["numpy_nullable", "pyarrow"] = "numpy_nullable",
) -> pd.DataFrame | Iterator[pd.DataFrame]:
"""Return a DataFrame corresponding the table.
Parameters
----------
table
Table name.
con
Use pymysql.connect() to use credentials directly or wr.mysql.connect() to fetch it from the Glue Catalog.
schema
Name of SQL schema in database to query.
Uses default schema if None.
index_col
Column(s) to set as index(MultiIndex).
params
List of parameters to pass to execute method.
The syntax used to pass parameters is database driver dependent.
Check your database driver documentation for which of the five syntax styles,
described in PEP 249’s paramstyle, is supported.
chunksize
If specified, return an iterator where chunksize is the number of rows to include in each chunk.
dtype
Specifying the datatype for columns.
The keys should be the column names and the values should be the PyArrow types.
safe
Check for overflows or other unsafe data type conversions.
timestamp_as_object
Cast non-nanosecond timestamps (np.datetime64) to objects.
dtype_backend
Which dtype_backend to use, e.g. whether a DataFrame should have NumPy arrays,
nullable dtypes are used for all dtypes that have a nullable implementation when
“numpy_nullable” is set, pyarrow is used for all dtypes if “pyarrow” is set.
The dtype_backends are still experimential. The "pyarrow" backend is only supported with Pandas 2.0 or above.
Returns
-------
Result as Pandas DataFrame(s).
Examples
--------
Reading from MySQL using a Glue Catalog Connections
>>> import awswrangler as wr
>>> with wr.mysql.connect("MY_GLUE_CONNECTION") as con:
... df = wr.mysql.read_sql_table(
... table="my_table",
... schema="test",
... con=con
... )
"""
sql: str = (
f"SELECT * FROM {identifier(table)}"
if schema is None
else f"SELECT * FROM {identifier(schema)}.{identifier(table)}"
)
return read_sql_query(
sql=sql,
con=con,
index_col=index_col,
params=params,
chunksize=chunksize,
dtype=dtype,
safe=safe,
timestamp_as_object=timestamp_as_object,
dtype_backend=dtype_backend,
)
_ToSqlModeLiteral = Literal[
"append", "overwrite", "upsert_replace_into", "upsert_duplicate_key", "upsert_distinct", "ignore"
]
@_utils.check_optional_dependency(pymysql, "pymysql")
@apply_configs
def to_sql(
df: pd.DataFrame,
con: "pymysql.connections.Connection", # type: ignore[type-arg]
table: str,
schema: str,
mode: _ToSqlModeLiteral = "append",
index: bool = False,
dtype: dict[str, str] | None = None,
varchar_lengths: dict[str, int] | None = None,
use_column_names: bool = False,
chunksize: int = 200,
cursorclass: type["Cursor"] | None = None,
) -> None:
"""Write records stored in a DataFrame into MySQL.
Parameters
----------
df
`Pandas DataFrame <https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html>`_
con
Use pymysql.connect() to use credentials directly or wr.mysql.connect() to fetch it from the Glue Catalog.
table
Table name
schema
Schema name
mode
Supports the following modes:
- ``append``: Inserts new records into table.
- ``overwrite``: Drops table and recreates.
- ``upsert_duplicate_key``: Performs an upsert using `ON DUPLICATE KEY` clause. Requires table schema to have
defined keys, otherwise duplicate records will be inserted.
- ``upsert_replace_into``: Performs upsert using `REPLACE INTO` clause. Less efficient and still requires the
table schema to have keys or else duplicate records will be inserted
- ``upsert_distinct``: Inserts new records, including duplicates, then recreates the table and inserts `DISTINCT`
records from old table. This is the least efficient approach but handles scenarios where there are no
keys on table.
- ``ignore``: Inserts new records into table using `INSERT IGNORE` clause.
index
True to store the DataFrame index as a column in the table,
otherwise False to ignore it.
dtype
Dictionary of columns names and MySQL types to be casted.
Useful when you have columns with undetermined or mixed data types.
(e.g. {'col name': 'TEXT', 'col2 name': 'FLOAT'})
varchar_lengths
Dict of VARCHAR length by columns. (e.g. {"col1": 10, "col5": 200}).
use_column_names
If set to True, will use the column names of the DataFrame for generating the INSERT SQL Query.
E.g. If the DataFrame has two columns `col1` and `col3` and `use_column_names` is True, data will only be
inserted into the database columns `col1` and `col3`.
chunksize
Number of rows which are inserted with each SQL query. Defaults to inserting 200 rows per query.
cursorclass
Cursor class to use, e.g. SSCrusor; defaults to :class:`pymysql.cursors.Cursor`
https://pymysql.readthedocs.io/en/latest/modules/cursors.html
Examples
--------
Writing to MySQL using a Glue Catalog Connections
>>> import awswrangler as wr
>>> with wr.mysql.connect("MY_GLUE_CONNECTION") as con:
... wr.mysql.to_sql(
... df=df,
... table="my_table",
... schema="test",
... con=con
... )
"""
if df.empty is True:
raise exceptions.EmptyDataFrame("DataFrame cannot be empty.")
mode = cast(_ToSqlModeLiteral, mode.strip().lower())
allowed_modes = [
"append",
"overwrite",
"upsert_replace_into",
"upsert_duplicate_key",
"upsert_distinct",
"ignore",
]
_db_utils.validate_mode(mode=mode, allowed_modes=allowed_modes)
_validate_connection(con=con)
try:
with con.cursor(cursor=cursorclass or pymysql.cursors.Cursor) as cursor:
_create_table(
df=df,
cursor=cursor,
table=table,
schema=schema,
mode=mode,
index=index,
dtype=dtype,
varchar_lengths=varchar_lengths,
)
if index:
df.reset_index(level=df.index.names, inplace=True)
column_placeholders: str = ", ".join(["%s"] * len(df.columns))
insertion_columns = ""
upsert_columns = ""
upsert_str = ""
ignore_str = " IGNORE" if mode == "ignore" else ""
if use_column_names:
insertion_columns = f"({', '.join([identifier(col) for col in df.columns])})"
if mode == "upsert_duplicate_key":
upsert_columns = ", ".join(df.columns.map(lambda col: f"{identifier(col)}=VALUES({identifier(col)})"))
upsert_str = f" ON DUPLICATE KEY UPDATE {upsert_columns}"
placeholder_parameter_pair_generator = _db_utils.generate_placeholder_parameter_pairs(
df=df, column_placeholders=column_placeholders, chunksize=chunksize
)
sql: str
for placeholders, parameters in placeholder_parameter_pair_generator:
if mode == "upsert_replace_into":
sql = f"REPLACE INTO {identifier(schema)}.{identifier(table)} {insertion_columns} VALUES {placeholders}"
else:
sql = f"""INSERT{ignore_str} INTO {identifier(schema)}.{identifier(table)} {insertion_columns}
VALUES {placeholders}{upsert_str}"""
_logger.debug("sql: %s", sql)
cursor.executemany(sql, (parameters,))
con.commit()
if mode == "upsert_distinct":
temp_table = f"{table}_{uuid.uuid4().hex}"
cursor.execute(
f"CREATE TABLE {identifier(schema)}.{identifier(temp_table)} LIKE {identifier(schema)}.{identifier(table)}"
)
cursor.execute(
f"INSERT INTO {identifier(schema)}.{identifier(temp_table)} SELECT DISTINCT * FROM {identifier(schema)}.{identifier(table)}"
)
cursor.execute(f"DROP TABLE IF EXISTS {identifier(schema)}.{identifier(table)}")
cursor.execute(
f"ALTER TABLE {identifier(schema)}.{identifier(temp_table)} RENAME TO {identifier(table)}"
)
con.commit()
except Exception as ex:
con.rollback()
_logger.error(ex)
raise