awswrangler/oracle.py (354 lines of code) (raw):

# mypy: disable-error-code=name-defined """Amazon Oracle Database Module.""" from __future__ import annotations import logging from decimal import Decimal from typing import ( TYPE_CHECKING, Any, Callable, Iterator, Literal, TypeVar, overload, ) import boto3 import pyarrow as pa import awswrangler.pandas as pd from awswrangler import _data_types, _utils, exceptions from awswrangler import _databases as _db_utils from awswrangler._config import apply_configs from awswrangler._sql_utils import identifier if TYPE_CHECKING: try: import oracledb except ImportError: pass else: oracledb = _utils.import_optional_dependency("oracledb") __all__ = ["connect", "read_sql_query", "read_sql_table", "to_sql"] _logger: logging.Logger = logging.getLogger(__name__) FuncT = TypeVar("FuncT", bound=Callable[..., Any]) def _validate_connection(con: "oracledb.Connection") -> None: if not isinstance(con, oracledb.Connection): raise exceptions.InvalidConnection( "Invalid 'conn' argument, please pass a " "oracledb.Connection object. Use oracledb.connect() to use " "credentials directly or wr.oracle.connect() to fetch it from the Glue Catalog." ) def _get_table_identifier(schema: str | None, table: str) -> str: schema_str = f"{identifier(schema, sql_mode='ansi')}." if schema else "" table_identifier = f"{schema_str}{identifier(table, sql_mode='ansi')}" return table_identifier def _drop_table(cursor: "oracledb.Cursor", schema: str | None, table: str) -> None: table_identifier = _get_table_identifier(schema, table) sql = f""" BEGIN EXECUTE IMMEDIATE 'DROP TABLE {table_identifier}'; EXCEPTION WHEN OTHERS THEN IF SQLCODE != -942 THEN RAISE; END IF; END; """ _logger.debug("Drop table query:\n%s", sql) cursor.execute(sql) def _does_table_exist(cursor: "oracledb.Cursor", schema: str | None, table: str) -> bool: if schema: cursor.execute( "SELECT * FROM ALL_TABLES WHERE OWNER = :db_schema AND TABLE_NAME = :db_table", db_schema=schema, db_table=table, ) else: cursor.execute("SELECT * FROM ALL_TABLES WHERE TABLE_NAME = :tbl", tbl=table) return len(cursor.fetchall()) > 0 def _create_table( df: pd.DataFrame, cursor: "oracledb.Cursor", table: str, schema: str, mode: str, index: bool, dtype: dict[str, str] | None, varchar_lengths: dict[str, int] | None, primary_keys: list[str] | None, ) -> None: if mode == "overwrite": _drop_table(cursor=cursor, schema=schema, table=table) elif _does_table_exist(cursor=cursor, schema=schema, table=table): return oracle_types: dict[str, str] = _data_types.database_types_from_pandas( df=df, index=index, dtype=dtype, varchar_lengths_default="CLOB", varchar_lengths=varchar_lengths, converter_func=_data_types.pyarrow2oracle, ) cols_str: str = "".join([f"{identifier(k, sql_mode='ansi')} {v},\n" for k, v in oracle_types.items()])[:-2] if primary_keys: primary_keys_str = ", ".join([f"{identifier(k, sql_mode='ansi')}" for k in primary_keys]) else: primary_keys_str = None table_identifier = _get_table_identifier(schema, table) create_table_params: str = f"\n{cols_str}" if primary_keys_str: create_table_params += f",\nPRIMARY KEY ({primary_keys_str})" sql = f"CREATE TABLE {table_identifier} ({create_table_params})" _logger.debug("Create table query:\n%s", sql) cursor.execute(sql) @_utils.check_optional_dependency(oracledb, "oracledb") def connect( connection: str | None = None, secret_id: str | None = None, catalog_id: str | None = None, dbname: str | None = None, boto3_session: boto3.Session | None = None, call_timeout: int | None = 0, ) -> "oracledb.Connection": """Return a oracledb connection from a Glue Catalog Connection. https://github.com/oracle/python-oracledb Note ---- You MUST pass a `connection` OR `secret_id`. Here is an example of the secret structure in Secrets Manager: { "host":"oracle-instance-wrangler.cr4trrvge8rz.us-east-1.rds.amazonaws.com", "username":"test", "password":"test", "engine":"oracle", "port":"1521", "dbname": "mydb" # Optional } Parameters ---------- connection Glue Catalog Connection name. secret_id Specifies the secret containing the connection details that you want to retrieve. You can specify either the Amazon Resource Name (ARN) or the friendly name of the secret. catalog_id The ID of the Data Catalog. If none is provided, the AWS account ID is used by default. dbname Optional database name to overwrite the stored one. boto3_session The default boto3 session will be used if **boto3_session** is ``None``. call_timeout This is the time in milliseconds that a single round-trip to the database may take before a timeout will occur. The default is None which means no timeout. This parameter is forwarded to oracledb. https://cx-oracle.readthedocs.io/en/latest/api_manual/connection.html#Connection.call_timeout Returns ------- oracledb connection. Examples -------- >>> import awswrangler as wr >>> with wr.oracle.connect(connection="MY_GLUE_CONNECTION") as con: ... with con.cursor() as cursor: ... cursor.execute("SELECT 1 FROM DUAL") ... print(cursor.fetchall()) """ attrs: _db_utils.ConnectionAttributes = _db_utils.get_connection_attributes( connection=connection, secret_id=secret_id, catalog_id=catalog_id, dbname=dbname, boto3_session=boto3_session ) if attrs.kind != "oracle": raise exceptions.InvalidDatabaseType( f"Invalid connection type ({attrs.kind}. It must be an oracle connection.)" ) connection_dsn = oracledb.makedsn(attrs.host, attrs.port, service_name=attrs.database) _logger.debug("DSN: %s", connection_dsn) oracle_connection = oracledb.connect( user=attrs.user, password=attrs.password, dsn=connection_dsn, ) # oracledb.connect does not have a call_timeout attribute, it has to be set separatly oracle_connection.call_timeout = call_timeout # type: ignore[assignment] return oracle_connection @overload def read_sql_query( sql: str, con: "oracledb.Connection", index_col: str | list[str] | None = ..., params: list[Any] | tuple[Any, ...] | dict[Any, Any] | None = ..., chunksize: None = ..., dtype: dict[str, pa.DataType] | None = ..., safe: bool = ..., timestamp_as_object: bool = ..., dtype_backend: Literal["numpy_nullable", "pyarrow"] = ..., ) -> pd.DataFrame: ... @overload def read_sql_query( sql: str, con: "oracledb.Connection", *, index_col: str | list[str] | None = ..., params: list[Any] | tuple[Any, ...] | dict[Any, Any] | None = ..., chunksize: int, dtype: dict[str, pa.DataType] | None = ..., safe: bool = ..., timestamp_as_object: bool = ..., dtype_backend: Literal["numpy_nullable", "pyarrow"] = ..., ) -> Iterator[pd.DataFrame]: ... @overload def read_sql_query( sql: str, con: "oracledb.Connection", *, index_col: str | list[str] | None = ..., params: list[Any] | tuple[Any, ...] | dict[Any, Any] | None = ..., chunksize: int | None, dtype: dict[str, pa.DataType] | None = ..., safe: bool = ..., timestamp_as_object: bool = ..., dtype_backend: Literal["numpy_nullable", "pyarrow"] = ..., ) -> pd.DataFrame | Iterator[pd.DataFrame]: ... @_utils.check_optional_dependency(oracledb, "oracledb") def read_sql_query( sql: str, con: "oracledb.Connection", index_col: str | list[str] | None = None, params: list[Any] | tuple[Any, ...] | dict[Any, Any] | None = None, chunksize: int | None = None, dtype: dict[str, pa.DataType] | None = None, safe: bool = True, timestamp_as_object: bool = False, dtype_backend: Literal["numpy_nullable", "pyarrow"] = "numpy_nullable", ) -> pd.DataFrame | Iterator[pd.DataFrame]: """Return a DataFrame corresponding to the result set of the query string. Parameters ---------- sql SQL query. con Use oracledb.connect() to use credentials directly or wr.oracle.connect() to fetch it from the Glue Catalog. index_col Column(s) to set as index(MultiIndex). params List of parameters to pass to execute method. The syntax used to pass parameters is database driver dependent. Check your database driver documentation for which of the five syntax styles, described in PEP 249’s paramstyle, is supported. chunksize If specified, return an iterator where chunksize is the number of rows to include in each chunk. dtype Specifying the datatype for columns. The keys should be the column names and the values should be the PyArrow types. safe Check for overflows or other unsafe data type conversions. timestamp_as_object Cast non-nanosecond timestamps (np.datetime64) to objects. dtype_backend Which dtype_backend to use, e.g. whether a DataFrame should have NumPy arrays, nullable dtypes are used for all dtypes that have a nullable implementation when “numpy_nullable” is set, pyarrow is used for all dtypes if “pyarrow” is set. The dtype_backends are still experimential. The "pyarrow" backend is only supported with Pandas 2.0 or above. Returns ------- Result as Pandas DataFrame(s). Examples -------- Reading from Oracle Database using a Glue Catalog Connections >>> import awswrangler as wr >>> with wr.oracle.connect(connection="MY_GLUE_CONNECTION") as con: ... df = wr.oracle.read_sql_query( ... sql="SELECT * FROM test.my_table", ... con=con, ... ) """ _validate_connection(con=con) return _db_utils.read_sql_query( sql=sql, con=con, index_col=index_col, params=params, chunksize=chunksize, dtype=dtype, safe=safe, timestamp_as_object=timestamp_as_object, dtype_backend=dtype_backend, ) @overload def read_sql_table( table: str, con: "oracledb.Connection", schema: str | None = ..., index_col: str | list[str] | None = ..., params: list[Any] | tuple[Any, ...] | dict[Any, Any] | None = ..., chunksize: None = ..., dtype: dict[str, pa.DataType] | None = ..., safe: bool = ..., timestamp_as_object: bool = ..., dtype_backend: Literal["numpy_nullable", "pyarrow"] = ..., ) -> pd.DataFrame: ... @overload def read_sql_table( table: str, con: "oracledb.Connection", *, schema: str | None = ..., index_col: str | list[str] | None = ..., params: list[Any] | tuple[Any, ...] | dict[Any, Any] | None = ..., chunksize: int, dtype: dict[str, pa.DataType] | None = ..., safe: bool = ..., timestamp_as_object: bool = ..., dtype_backend: Literal["numpy_nullable", "pyarrow"] = ..., ) -> Iterator[pd.DataFrame]: ... @overload def read_sql_table( table: str, con: "oracledb.Connection", *, schema: str | None = ..., index_col: str | list[str] | None = ..., params: list[Any] | tuple[Any, ...] | dict[Any, Any] | None = ..., chunksize: int | None, dtype: dict[str, pa.DataType] | None = ..., safe: bool = ..., timestamp_as_object: bool = ..., dtype_backend: Literal["numpy_nullable", "pyarrow"] = ..., ) -> pd.DataFrame | Iterator[pd.DataFrame]: ... @_utils.check_optional_dependency(oracledb, "oracledb") def read_sql_table( table: str, con: "oracledb.Connection", schema: str | None = None, index_col: str | list[str] | None = None, params: list[Any] | tuple[Any, ...] | dict[Any, Any] | None = None, chunksize: int | None = None, dtype: dict[str, pa.DataType] | None = None, safe: bool = True, timestamp_as_object: bool = False, dtype_backend: Literal["numpy_nullable", "pyarrow"] = "numpy_nullable", ) -> pd.DataFrame | Iterator[pd.DataFrame]: """Return a DataFrame corresponding the table. Parameters ---------- table Table name. con Use oracledb.connect() to use credentials directly or wr.oracle.connect() to fetch it from the Glue Catalog. schema Name of SQL schema in database to query (if database flavor supports this). Uses default schema if None (default). index_col Column(s) to set as index(MultiIndex). params List of parameters to pass to execute method. The syntax used to pass parameters is database driver dependent. Check your database driver documentation for which of the five syntax styles, described in PEP 249’s paramstyle, is supported. chunksize If specified, return an iterator where chunksize is the number of rows to include in each chunk. dtype Specifying the datatype for columns. The keys should be the column names and the values should be the PyArrow types. safe Check for overflows or other unsafe data type conversions. timestamp_as_object Cast non-nanosecond timestamps (np.datetime64) to objects. dtype_backend Which dtype_backend to use, e.g. whether a DataFrame should have NumPy arrays, nullable dtypes are used for all dtypes that have a nullable implementation when “numpy_nullable” is set, pyarrow is used for all dtypes if “pyarrow” is set. The dtype_backends are still experimential. The "pyarrow" backend is only supported with Pandas 2.0 or above. Returns ------- Result as Pandas DataFrame(s). Examples -------- Reading from Oracle Database using a Glue Catalog Connections >>> import awswrangler as wr >>> with wr.oracle.connect(connection="MY_GLUE_CONNECTION") as con: ... df = wr.oracle.read_sql_table( ... table="my_table", ... schema="test", ... con=con, ... ) """ table_identifier = _get_table_identifier(schema, table) sql: str = f"SELECT * FROM {table_identifier}" return read_sql_query( sql=sql, con=con, index_col=index_col, params=params, chunksize=chunksize, dtype=dtype, safe=safe, timestamp_as_object=timestamp_as_object, dtype_backend=dtype_backend, ) def _generate_insert_statement( table_identifier: str, df: pd.DataFrame, use_column_names: bool, ) -> str: column_placeholders: str = f"({', '.join([':' + str(i + 1) for i in range(len(df.columns))])})" if use_column_names: insertion_columns = "(" + ", ".join(identifier(column, sql_mode="ansi") for column in df.columns) + ")" else: insertion_columns = "" return f"INSERT INTO {table_identifier} {insertion_columns} VALUES {column_placeholders}" def _generate_upsert_statement( table_identifier: str, df: pd.DataFrame, use_column_names: bool, primary_keys: list[str] | None, ) -> str: if use_column_names is False: raise exceptions.InvalidArgumentCombination('`use_column_names` has to be True when `mode="upsert"`') if not primary_keys: raise exceptions.InvalidArgumentCombination('`primary_keys` need to be defined when `mode="upsert"`') non_primary_key_columns = [key for key in df.columns if key not in set(primary_keys)] primary_keys_str = ", ".join([f"{identifier(key, sql_mode='ansi')}" for key in primary_keys]) columns_str = ", ".join([f"{identifier(key, sql_mode='ansi')}" for key in non_primary_key_columns]) column_placeholders: str = f"({', '.join([':' + str(i + 1) for i in range(len(df.columns))])})" primary_key_condition_str = " AND ".join( [f"{identifier(key, sql_mode='ansi')} = :{i + 1}" for i, key in enumerate(primary_keys)] ) assignment_str = ", ".join( [ f"{identifier(col, sql_mode='ansi')} = :{i + len(primary_keys) + 1}" for i, col in enumerate(non_primary_key_columns) ] ) return f""" BEGIN INSERT INTO {table_identifier} ({primary_keys_str}, {columns_str}) VALUES {column_placeholders}; EXCEPTION WHEN dup_val_on_index THEN UPDATE {table_identifier} SET {assignment_str} WHERE {primary_key_condition_str}; END; """ @_utils.check_optional_dependency(oracledb, "oracledb") @apply_configs def to_sql( df: pd.DataFrame, con: "oracledb.Connection", table: str, schema: str, mode: Literal["append", "overwrite", "upsert"] = "append", index: bool = False, dtype: dict[str, str] | None = None, varchar_lengths: dict[str, int] | None = None, use_column_names: bool = False, primary_keys: list[str] | None = None, chunksize: int = 200, ) -> None: """Write records stored in a DataFrame into Oracle Database. Parameters ---------- df Pandas DataFrame https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html con Use oracledb.connect() to use credentials directly or wr.oracle.connect() to fetch it from the Glue Catalog. table Table name schema Schema name mode Append, overwrite or upsert. index True to store the DataFrame index as a column in the table, otherwise False to ignore it. dtype Dictionary of columns names and Oracle types to be casted. Useful when you have columns with undetermined or mixed data types. (e.g. {'col name': 'TEXT', 'col2 name': 'FLOAT'}) varchar_lengths Dict of VARCHAR length by columns. (e.g. {"col1": 10, "col5": 200}). use_column_names If set to True, will use the column names of the DataFrame for generating the INSERT SQL Query. E.g. If the DataFrame has two columns `col1` and `col3` and `use_column_names` is True, data will only be inserted into the database columns `col1` and `col3`. primary_keys Primary keys. chunksize Number of rows which are inserted with each SQL query. Defaults to inserting 200 rows per query. Examples -------- Writing to Oracle Database using a Glue Catalog Connections >>> import awswrangler as wr >>> with wr.oracle.connect(connection="MY_GLUE_CONNECTION") as con: ... wr.oracle.to_sql( ... df=df, ... table="table", ... schema="ORCL", ... con=con, ... ) """ if df.empty is True: raise exceptions.EmptyDataFrame("DataFrame cannot be empty.") _validate_connection(con=con) try: with con.cursor() as cursor: _create_table( df=df, cursor=cursor, table=table, schema=schema, mode=mode, index=index, dtype=dtype, varchar_lengths=varchar_lengths, primary_keys=primary_keys, ) if index: df.reset_index(level=df.index.names, inplace=True) column_placeholders: str = f"({', '.join([':' + str(i + 1) for i in range(len(df.columns))])})" table_identifier = _get_table_identifier(schema, table) if mode == "upsert": sql = _generate_upsert_statement(table_identifier, df, use_column_names, primary_keys) else: sql = _generate_insert_statement(table_identifier, df, use_column_names) placeholder_parameter_pair_generator = _db_utils.generate_placeholder_parameter_pairs( df=df, column_placeholders=column_placeholders, chunksize=chunksize ) for _, parameters in placeholder_parameter_pair_generator: parameters = list(zip(*[iter(parameters)] * len(df.columns))) # noqa: PLW2901 _logger.debug("sql: %s", sql) cursor.executemany(sql, parameters) con.commit() except Exception as ex: con.rollback() _logger.error(ex) raise def detect_oracle_decimal_datatype(cursor: Any) -> dict[str, pa.DataType]: """Determine if a given Oracle column is a decimal, not just a standard float value.""" dtype = {} _logger.debug("cursor type: %s", type(cursor)) if isinstance(cursor, oracledb.Cursor): # Oracle stores DECIMAL as the NUMBER type for name, db_type, display_size, internal_size, precision, scale, null_ok in cursor.description: _logger.debug((name, db_type, display_size, internal_size, precision, scale, null_ok)) if db_type == oracledb.DB_TYPE_NUMBER and scale is not None and scale > 0: dtype[name] = pa.decimal128(precision, scale) _logger.debug("decimal dtypes: %s", dtype) return dtype def handle_oracle_objects( col_values: list[Any], col_name: str, dtype: dict[str, pa.DataType] | None = None ) -> list[Any]: """Retrieve Oracle LOB values which may be string or bytes, and convert float to decimal.""" if any(isinstance(col_value, oracledb.LOB) for col_value in col_values): col_values = [ col_value.read() if isinstance(col_value, oracledb.LOB) else col_value for col_value in col_values ] if dtype is not None: if isinstance(dtype[col_name], pa.Decimal128Type): _logger.debug("decimal_col_values:\n%s", col_values) col_values = [ Decimal(repr(col_value)) if isinstance(col_value, float) else col_value for col_value in col_values ] return col_values