awswrangler/s3/_write_excel.py (33 lines of code) (raw):

"""Amazon S3 Excel Write Module (PRIVATE).""" from __future__ import annotations import logging from typing import Any import boto3 import pandas as pd from awswrangler import exceptions from awswrangler.s3._fs import open_s3_object _logger: logging.Logger = logging.getLogger(__name__) def to_excel( df: pd.DataFrame, path: str, boto3_session: boto3.Session | None = None, s3_additional_kwargs: dict[str, Any] | None = None, use_threads: bool | int = True, **pandas_kwargs: Any, ) -> str: """Write EXCEL file on Amazon S3. Note ---- This function accepts any Pandas's read_excel() argument. https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_excel.html Note ---- Depending on the file extension ('xlsx', 'xls', 'odf'...), an additional library might have to be installed first. Note ---- In case of `use_threads=True` the number of threads that will be spawned will be gotten from os.cpu_count(). Parameters ---------- df Pandas DataFrame https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html path Amazon S3 path (e.g. s3://bucket/filename.xlsx). boto3_session Boto3 Session. The default boto3 Session will be used if boto3_session receive None. pyarrow_additional_kwargs Forwarded to botocore requests. e.g. s3_additional_kwargs={'ServerSideEncryption': 'aws:kms', 'SSEKMSKeyId': 'YOUR_KMS_KEY_ARN'} use_threads True to enable concurrent requests, False to disable multiple threads. If enabled os.cpu_count() will be used as the max number of threads. If integer is provided, specified number is used. pandas_kwargs KEYWORD arguments forwarded to pandas.DataFrame.to_excel(). You can NOT pass `pandas_kwargs` explicit, just add valid Pandas arguments in the function call and awswrangler will accept it. e.g. wr.s3.to_excel(df, path, na_rep="", index=False) https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_excel.html Returns ------- Written S3 path. Examples -------- Writing EXCEL file >>> import awswrangler as wr >>> import pandas as pd >>> wr.s3.to_excel(df, 's3://bucket/filename.xlsx') """ if "pandas_kwargs" in pandas_kwargs: raise exceptions.InvalidArgument( "You can NOT pass `pandas_kwargs` explicit, just add valid " "Pandas arguments in the function call and awswrangler will accept it." "e.g. wr.s3.to_excel(df, path, na_rep=" ", index=False)" ) with open_s3_object( path=path, mode="wb", use_threads=use_threads, s3_additional_kwargs=s3_additional_kwargs, boto3_session=boto3_session, ) as f: _logger.debug("pandas_kwargs: %s", pandas_kwargs) df.to_excel(f, **pandas_kwargs) return path