awswrangler/s3/_write_parquet.py (481 lines of code) (raw):
"""Amazon PARQUET S3 Parquet Write Module (PRIVATE)."""
from __future__ import annotations
import logging
import math
from contextlib import contextmanager
from typing import TYPE_CHECKING, Any, Callable, Iterator, Literal, cast
import boto3
import pandas as pd
import pyarrow as pa
import pyarrow.lib
import pyarrow.parquet
from awswrangler import _utils, catalog, exceptions, typing
from awswrangler._arrow import _df_to_table
from awswrangler._config import apply_configs
from awswrangler._distributed import engine
from awswrangler.catalog._create import _create_parquet_table
from awswrangler.s3._fs import open_s3_object
from awswrangler.s3._read_parquet import _read_parquet_metadata
from awswrangler.s3._write import (
_COMPRESSION_2_EXT,
_get_chunk_file_path,
_get_file_path,
_get_write_table_args,
_S3WriteStrategy,
_validate_args,
)
from awswrangler.s3._write_concurrent import _WriteProxy
from awswrangler.typing import (
ArrowEncryptionConfiguration,
AthenaPartitionProjectionSettings,
BucketingInfoTuple,
GlueTableSettings,
_S3WriteDataReturnValue,
)
if TYPE_CHECKING:
from mypy_boto3_s3 import S3Client
_logger: logging.Logger = logging.getLogger(__name__)
@contextmanager
def _new_writer(
file_path: str,
compression: str | None,
pyarrow_additional_kwargs: dict[str, Any] | None,
schema: pa.Schema,
s3_client: "S3Client",
s3_additional_kwargs: dict[str, str] | None,
use_threads: bool | int,
encryption_configuration: ArrowEncryptionConfiguration | None,
) -> Iterator[pyarrow.parquet.ParquetWriter]:
writer: pyarrow.parquet.ParquetWriter | None = None
if not pyarrow_additional_kwargs:
pyarrow_additional_kwargs = {}
if "coerce_timestamps" not in pyarrow_additional_kwargs:
pyarrow_additional_kwargs["coerce_timestamps"] = "ms"
if "flavor" not in pyarrow_additional_kwargs:
pyarrow_additional_kwargs["flavor"] = "spark"
if "version" not in pyarrow_additional_kwargs:
# By default, use version 1.0 logical type set to maximize compatibility
pyarrow_additional_kwargs["version"] = "1.0"
if "use_dictionary" not in pyarrow_additional_kwargs:
pyarrow_additional_kwargs["use_dictionary"] = True
if "write_statistics" not in pyarrow_additional_kwargs:
pyarrow_additional_kwargs["write_statistics"] = True
if "schema" not in pyarrow_additional_kwargs:
pyarrow_additional_kwargs["schema"] = schema
# When client side encryption materials are given
# construct file encryption properties object and pass it to pyarrow writer
encryption_properties = (
encryption_configuration["crypto_factory"].file_encryption_properties(
encryption_configuration["kms_connection_config"], encryption_configuration["encryption_config"]
)
if encryption_configuration
else None
)
with open_s3_object(
path=file_path,
mode="wb",
use_threads=use_threads,
s3_additional_kwargs=s3_additional_kwargs,
s3_client=s3_client,
) as f:
try:
writer = pyarrow.parquet.ParquetWriter(
where=f,
compression="NONE" if compression is None else compression,
encryption_properties=encryption_properties,
**pyarrow_additional_kwargs,
)
yield writer
finally:
if writer is not None and writer.is_open is True:
writer.close()
def _write_chunk(
file_path: str,
s3_client: "S3Client",
s3_additional_kwargs: dict[str, str] | None,
compression: str | None,
pyarrow_additional_kwargs: dict[str, str],
table: pa.Table,
offset: int,
chunk_size: int,
use_threads: bool | int,
encryption_configuration: ArrowEncryptionConfiguration | None,
) -> list[str]:
write_table_args = _get_write_table_args(pyarrow_additional_kwargs)
with _new_writer(
file_path=file_path,
compression=compression,
pyarrow_additional_kwargs=pyarrow_additional_kwargs,
schema=table.schema,
s3_client=s3_client,
s3_additional_kwargs=s3_additional_kwargs,
use_threads=use_threads,
encryption_configuration=encryption_configuration,
) as writer:
writer.write_table(table.slice(offset, chunk_size), **write_table_args)
return [file_path]
def _to_parquet_chunked(
file_path: str,
s3_client: "S3Client",
s3_additional_kwargs: dict[str, str] | None,
compression: str | None,
pyarrow_additional_kwargs: dict[str, Any],
table: pa.Table,
max_rows_by_file: int,
num_of_rows: int,
cpus: int,
encryption_configuration: ArrowEncryptionConfiguration | None,
) -> list[str]:
chunks: int = math.ceil(num_of_rows / max_rows_by_file)
use_threads: bool | int = cpus > 1
proxy: _WriteProxy = _WriteProxy(use_threads=use_threads)
for chunk in range(chunks):
offset: int = chunk * max_rows_by_file
write_path: str = _get_chunk_file_path(chunk, file_path)
proxy.write(
func=_write_chunk,
file_path=write_path,
s3_client=s3_client,
s3_additional_kwargs=s3_additional_kwargs,
compression=compression,
pyarrow_additional_kwargs=pyarrow_additional_kwargs,
table=table,
offset=offset,
chunk_size=max_rows_by_file,
use_threads=use_threads,
encryption_configuration=encryption_configuration,
)
return proxy.close() # blocking
@engine.dispatch_on_engine
def _to_parquet(
df: pd.DataFrame,
schema: pa.Schema,
index: bool,
compression: str | None,
compression_ext: str,
pyarrow_additional_kwargs: dict[str, Any],
cpus: int,
dtype: dict[str, str],
s3_client: "S3Client" | None,
s3_additional_kwargs: dict[str, str] | None,
use_threads: bool | int,
path: str | None = None,
path_root: str | None = None,
filename_prefix: str | None = None,
max_rows_by_file: int | None = 0,
bucketing: bool = False,
encryption_configuration: ArrowEncryptionConfiguration | None = None,
) -> list[str]:
s3_client = s3_client if s3_client else _utils.client(service_name="s3")
file_path = _get_file_path(
path_root=path_root,
path=path,
filename_prefix=filename_prefix,
compression_ext=compression_ext,
extension=".parquet",
)
table: pa.Table = _df_to_table(df, schema, index, dtype)
if max_rows_by_file is not None and max_rows_by_file > 0:
paths: list[str] = _to_parquet_chunked(
file_path=file_path,
s3_client=s3_client,
s3_additional_kwargs=s3_additional_kwargs,
compression=compression,
pyarrow_additional_kwargs=pyarrow_additional_kwargs,
table=table,
max_rows_by_file=max_rows_by_file,
num_of_rows=df.shape[0],
cpus=cpus,
encryption_configuration=encryption_configuration,
)
else:
write_table_args = _get_write_table_args(pyarrow_additional_kwargs)
with _new_writer(
file_path=file_path,
compression=compression,
pyarrow_additional_kwargs=pyarrow_additional_kwargs,
schema=table.schema,
s3_client=s3_client,
s3_additional_kwargs=s3_additional_kwargs,
use_threads=use_threads,
encryption_configuration=encryption_configuration,
) as writer:
writer.write_table(table, **write_table_args)
paths = [file_path]
return paths
class _S3ParquetWriteStrategy(_S3WriteStrategy):
@property
def _write_to_s3_func(self) -> Callable[..., list[str]]:
return _to_parquet
def _write_to_s3(
self,
df: pd.DataFrame,
schema: pa.Schema,
index: bool,
compression: str | None,
compression_ext: str,
pyarrow_additional_kwargs: dict[str, Any],
cpus: int,
dtype: dict[str, str],
s3_client: "S3Client" | None,
s3_additional_kwargs: dict[str, str] | None,
use_threads: bool | int,
path: str | None = None,
path_root: str | None = None,
filename_prefix: str | None = None,
max_rows_by_file: int | None = 0,
bucketing: bool = False,
encryption_configuration: ArrowEncryptionConfiguration | None = None,
) -> list[str]:
return _to_parquet(
df=df,
schema=schema,
index=index,
compression=compression,
compression_ext=compression_ext,
pyarrow_additional_kwargs=pyarrow_additional_kwargs,
cpus=cpus,
dtype=dtype,
s3_client=s3_client,
s3_additional_kwargs=s3_additional_kwargs,
use_threads=use_threads,
path=path,
path_root=path_root,
filename_prefix=filename_prefix,
max_rows_by_file=max_rows_by_file,
bucketing=bucketing,
encryption_configuration=encryption_configuration,
)
def _create_glue_table(
self,
database: str,
table: str,
path: str,
columns_types: dict[str, str],
table_type: str | None = None,
partitions_types: dict[str, str] | None = None,
bucketing_info: BucketingInfoTuple | None = None,
catalog_id: str | None = None,
compression: str | None = None,
description: str | None = None,
parameters: dict[str, str] | None = None,
columns_comments: dict[str, str] | None = None,
columns_parameters: dict[str, dict[str, str]] | None = None,
mode: str = "overwrite",
catalog_versioning: bool = False,
athena_partition_projection_settings: AthenaPartitionProjectionSettings | None = None,
boto3_session: boto3.Session | None = None,
catalog_table_input: dict[str, Any] | None = None,
) -> None:
return _create_parquet_table(
database=database,
table=table,
path=path,
columns_types=columns_types,
table_type=table_type,
partitions_types=partitions_types,
bucketing_info=bucketing_info,
catalog_id=catalog_id,
compression=compression,
description=description,
parameters=parameters,
columns_comments=columns_comments,
columns_parameters=columns_parameters,
mode=mode,
catalog_versioning=catalog_versioning,
athena_partition_projection_settings=athena_partition_projection_settings,
boto3_session=boto3_session,
catalog_table_input=catalog_table_input,
)
def _add_glue_partitions(
self,
database: str,
table: str,
partitions_values: dict[str, list[str]],
bucketing_info: BucketingInfoTuple | None = None,
catalog_id: str | None = None,
compression: str | None = None,
boto3_session: boto3.Session | None = None,
columns_types: dict[str, str] | None = None,
partitions_parameters: dict[str, str] | None = None,
) -> None:
return catalog.add_parquet_partitions(
database=database,
table=table,
partitions_values=partitions_values,
bucketing_info=bucketing_info,
compression=compression,
boto3_session=boto3_session,
catalog_id=catalog_id,
columns_types=columns_types,
partitions_parameters=partitions_parameters,
)
@apply_configs
@_utils.validate_distributed_kwargs(
unsupported_kwargs=["boto3_session", "s3_additional_kwargs"],
)
def to_parquet(
df: pd.DataFrame,
path: str | None = None,
index: bool = False,
compression: str | None = "snappy",
pyarrow_additional_kwargs: dict[str, Any] | None = None,
max_rows_by_file: int | None = None,
use_threads: bool | int = True,
boto3_session: boto3.Session | None = None,
s3_additional_kwargs: dict[str, Any] | None = None,
sanitize_columns: bool = False,
dataset: bool = False,
filename_prefix: str | None = None,
partition_cols: list[str] | None = None,
bucketing_info: BucketingInfoTuple | None = None,
concurrent_partitioning: bool = False,
mode: Literal["append", "overwrite", "overwrite_partitions"] | None = None,
catalog_versioning: bool = False,
schema_evolution: bool = True,
database: str | None = None,
table: str | None = None,
glue_table_settings: GlueTableSettings | None = None,
dtype: dict[str, str] | None = None,
athena_partition_projection_settings: typing.AthenaPartitionProjectionSettings | None = None,
catalog_id: str | None = None,
encryption_configuration: ArrowEncryptionConfiguration | None = None,
) -> _S3WriteDataReturnValue:
"""Write Parquet file or dataset on Amazon S3.
The concept of Dataset goes beyond the simple idea of ordinary files and enable more
complex features like partitioning and catalog integration (Amazon Athena/AWS Glue Catalog).
Note
----
This operation may mutate the original pandas DataFrame in-place. To avoid this behaviour
please pass in a deep copy instead (i.e. `df.copy()`)
Note
----
If `database` and `table` arguments are passed, the table name and all column names
will be automatically sanitized using `wr.catalog.sanitize_table_name` and `wr.catalog.sanitize_column_name`.
Please, pass `sanitize_columns=True` to enforce this behaviour always.
Note
----
In case of `use_threads=True` the number of threads
that will be spawned will be gotten from os.cpu_count().
Parameters
----------
df
Pandas DataFrame https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
path
S3 path (for file e.g. ``s3://bucket/prefix/filename.parquet``) (for dataset e.g. ``s3://bucket/prefix``).
Required if dataset=False or when dataset=True and creating a new dataset
index
True to store the DataFrame index in file, otherwise False to ignore it.
Is not supported in conjunction with `max_rows_by_file` when running the library with Ray/Modin.
compression
Compression style (``None``, ``snappy``, ``gzip``, ``zstd``).
pyarrow_additional_kwargs
Additional parameters forwarded to pyarrow.
e.g. pyarrow_additional_kwargs={'coerce_timestamps': 'ns', 'use_deprecated_int96_timestamps': False,
'allow_truncated_timestamps'=False}
max_rows_by_file
Max number of rows in each file.
Default is None i.e. don't split the files.
(e.g. 33554432, 268435456)
Is not supported in conjunction with `index=True` when running the library with Ray/Modin.
use_threads
True to enable concurrent requests, False to disable multiple threads.
If enabled os.cpu_count() will be used as the max number of threads.
If integer is provided, specified number is used.
boto3_session
Boto3 Session. The default boto3 session will be used if boto3_session receive None.
s3_additional_kwargs
Forwarded to botocore requests.
e.g. s3_additional_kwargs={'ServerSideEncryption': 'aws:kms', 'SSEKMSKeyId': 'YOUR_KMS_KEY_ARN'}
sanitize_columns
True to sanitize columns names (using `wr.catalog.sanitize_table_name` and `wr.catalog.sanitize_column_name`)
or False to keep it as is.
True value behaviour is enforced if `database` and `table` arguments are passed.
dataset
If True store a parquet dataset instead of a ordinary file(s)
If True, enable all follow arguments:
partition_cols, mode, database, table, description, parameters, columns_comments, concurrent_partitioning,
catalog_versioning, projection_params, catalog_id, schema_evolution.
filename_prefix
If dataset=True, add a filename prefix to the output files.
partition_cols
List of column names that will be used to create partitions. Only takes effect if dataset=True.
bucketing_info
Tuple consisting of the column names used for bucketing as the first element and the number of buckets as the
second element.
Only `str`, `int` and `bool` are supported as column data types for bucketing.
concurrent_partitioning
If True will increase the parallelism level during the partitions writing. It will decrease the
writing time and increase the memory usage.
https://aws-sdk-pandas.readthedocs.io/en/3.11.0/tutorials/022%20-%20Writing%20Partitions%20Concurrently.html
mode
``append`` (Default), ``overwrite``, ``overwrite_partitions``. Only takes effect if dataset=True.
For details check the related tutorial:
https://aws-sdk-pandas.readthedocs.io/en/3.11.0/tutorials/004%20-%20Parquet%20Datasets.html
catalog_versioning
If True and `mode="overwrite"`, creates an archived version of the table catalog before updating it.
schema_evolution
If True allows schema evolution (new or missing columns), otherwise a exception will be raised. True by default.
(Only considered if dataset=True and mode in ("append", "overwrite_partitions"))
Related tutorial:
https://aws-sdk-pandas.readthedocs.io/en/3.11.0/tutorials/014%20-%20Schema%20Evolution.html
database
Glue/Athena catalog: Database name.
table
Glue/Athena catalog: Table name.
glue_table_settings
Settings for writing to the Glue table.
dtype
Dictionary of columns names and Athena/Glue types to be casted.
Useful when you have columns with undetermined or mixed data types.
(e.g. {'col name': 'bigint', 'col2 name': 'int'})
athena_partition_projection_settings
Parameters of the Athena Partition Projection
(https://docs.aws.amazon.com/athena/latest/ug/partition-projection.html).
AthenaPartitionProjectionSettings is a `TypedDict`, meaning the passed parameter can be instantiated either as
an instance of AthenaPartitionProjectionSettings or as a regular Python dict.
Following projection parameters are supported:
.. list-table:: Projection Parameters
:header-rows: 1
* - Name
- Type
- Description
* - projection_types
- Optional[Dict[str, str]]
- Dictionary of partitions names and Athena projections types.
Valid types: "enum", "integer", "date", "injected"
https://docs.aws.amazon.com/athena/latest/ug/partition-projection-supported-types.html
(e.g. {'col_name': 'enum', 'col2_name': 'integer'})
* - projection_ranges
- Optional[Dict[str, str]]
- Dictionary of partitions names and Athena projections ranges.
https://docs.aws.amazon.com/athena/latest/ug/partition-projection-supported-types.html
(e.g. {'col_name': '0,10', 'col2_name': '-1,8675309'})
* - projection_values
- Optional[Dict[str, str]]
- Dictionary of partitions names and Athena projections values.
https://docs.aws.amazon.com/athena/latest/ug/partition-projection-supported-types.html
(e.g. {'col_name': 'A,B,Unknown', 'col2_name': 'foo,boo,bar'})
* - projection_intervals
- Optional[Dict[str, str]]
- Dictionary of partitions names and Athena projections intervals.
https://docs.aws.amazon.com/athena/latest/ug/partition-projection-supported-types.html
(e.g. {'col_name': '1', 'col2_name': '5'})
* - projection_digits
- Optional[Dict[str, str]]
- Dictionary of partitions names and Athena projections digits.
https://docs.aws.amazon.com/athena/latest/ug/partition-projection-supported-types.html
(e.g. {'col_name': '1', 'col2_name': '2'})
* - projection_formats
- Optional[Dict[str, str]]
- Dictionary of partitions names and Athena projections formats.
https://docs.aws.amazon.com/athena/latest/ug/partition-projection-supported-types.html
(e.g. {'col_date': 'yyyy-MM-dd', 'col2_timestamp': 'yyyy-MM-dd HH:mm:ss'})
* - projection_storage_location_template
- Optional[str]
- Value which is allows Athena to properly map partition values if the S3 file locations do not follow
a typical `.../column=value/...` pattern.
https://docs.aws.amazon.com/athena/latest/ug/partition-projection-setting-up.html
(e.g. s3://bucket/table_root/a=${a}/${b}/some_static_subdirectory/${c}/)
catalog_id
The ID of the Data Catalog from which to retrieve Databases.
If none is provided, the AWS account ID is used by default.
encryption_configuration
For Arrow client-side encryption provide materials as follows {'crypto_factory': pyarrow.parquet.encryption.CryptoFactory,
'kms_connection_config': pyarrow.parquet.encryption.KmsConnectionConfig,
'encryption_config': pyarrow.parquet.encryption.EncryptionConfiguration}
see: https://arrow.apache.org/docs/python/parquet.html#parquet-modular-encryption-columnar-encryption
Client Encryption is not supported in distributed mode.
Returns
-------
Dictionary with:
* 'paths': List of all stored files paths on S3.
* 'partitions_values': Dictionary of partitions added with keys as S3 path locations and values as a list of partitions values as str.
Examples
--------
Writing single file
>>> import awswrangler as wr
>>> import pandas as pd
>>> wr.s3.to_parquet(
... df=pd.DataFrame({'col': [1, 2, 3]}),
... path='s3://bucket/prefix/my_file.parquet',
... )
{
'paths': ['s3://bucket/prefix/my_file.parquet'],
'partitions_values': {}
}
Writing single file encrypted with a KMS key
>>> import awswrangler as wr
>>> import pandas as pd
>>> wr.s3.to_parquet(
... df=pd.DataFrame({'col': [1, 2, 3]}),
... path='s3://bucket/prefix/my_file.parquet',
... s3_additional_kwargs={
... 'ServerSideEncryption': 'aws:kms',
... 'SSEKMSKeyId': 'YOUR_KMS_KEY_ARN'
... }
... )
{
'paths': ['s3://bucket/prefix/my_file.parquet'],
'partitions_values': {}
}
Writing partitioned dataset
>>> import awswrangler as wr
>>> import pandas as pd
>>> wr.s3.to_parquet(
... df=pd.DataFrame({
... 'col': [1, 2, 3],
... 'col2': ['A', 'A', 'B']
... }),
... path='s3://bucket/prefix',
... dataset=True,
... partition_cols=['col2']
... )
{
'paths': ['s3://.../col2=A/x.parquet', 's3://.../col2=B/y.parquet'],
'partitions_values: {
's3://.../col2=A/': ['A'],
's3://.../col2=B/': ['B']
}
}
Writing partitioned dataset with partition projection
>>> import awswrangler as wr
>>> import pandas as pd
>>> from datetime import datetime
>>> dt = lambda x: datetime.strptime(x, "%Y-%m-%d").date()
>>> wr.s3.to_parquet(
... df=pd.DataFrame({
... "id": [1, 2, 3],
... "value": [1000, 1001, 1002],
... "category": ['A', 'B', 'C'],
... }),
... path='s3://bucket/prefix',
... dataset=True,
... partition_cols=['value', 'category'],
... athena_partition_projection_settings={
... "projection_types": {
... "value": "integer",
... "category": "enum",
... },
... "projection_ranges": {
... "value": "1000,2000",
... "category": "A,B,C",
... },
... },
... )
{
'paths': [
's3://.../value=1000/category=A/x.snappy.parquet', ...
],
'partitions_values': {
's3://.../value=1000/category=A/': [
'1000',
'A',
], ...
}
}
Writing bucketed dataset
>>> import awswrangler as wr
>>> import pandas as pd
>>> wr.s3.to_parquet(
... df=pd.DataFrame({
... 'col': [1, 2, 3],
... 'col2': ['A', 'A', 'B']
... }),
... path='s3://bucket/prefix',
... dataset=True,
... bucketing_info=(["col2"], 2)
... )
{
'paths': ['s3://.../x_bucket-00000.csv', 's3://.../col2=B/x_bucket-00001.csv'],
'partitions_values: {}
}
Writing dataset to S3 with metadata on Athena/Glue Catalog.
>>> import awswrangler as wr
>>> import pandas as pd
>>> wr.s3.to_parquet(
... df=pd.DataFrame({
... 'col': [1, 2, 3],
... 'col2': ['A', 'A', 'B']
... }),
... path='s3://bucket/prefix',
... dataset=True,
... partition_cols=['col2'],
... database='default', # Athena/Glue database
... table='my_table' # Athena/Glue table
... )
{
'paths': ['s3://.../col2=A/x.parquet', 's3://.../col2=B/y.parquet'],
'partitions_values: {
's3://.../col2=A/': ['A'],
's3://.../col2=B/': ['B']
}
}
Writing dataset casting empty column data type
>>> import awswrangler as wr
>>> import pandas as pd
>>> wr.s3.to_parquet(
... df=pd.DataFrame({
... 'col': [1, 2, 3],
... 'col2': ['A', 'A', 'B'],
... 'col3': [None, None, None]
... }),
... path='s3://bucket/prefix',
... dataset=True,
... database='default', # Athena/Glue database
... table='my_table' # Athena/Glue table
... dtype={'col3': 'date'}
... )
{
'paths': ['s3://.../x.parquet'],
'partitions_values: {}
}
"""
glue_table_settings = cast(
GlueTableSettings,
glue_table_settings if glue_table_settings else {},
)
table_type = glue_table_settings.get("table_type")
description = glue_table_settings.get("description")
parameters = glue_table_settings.get("parameters")
columns_comments = glue_table_settings.get("columns_comments")
columns_parameters = glue_table_settings.get("columns_parameters")
regular_partitions = glue_table_settings.get("regular_partitions", True)
_validate_args(
df=df,
table=table,
database=database,
dataset=dataset,
path=path,
partition_cols=partition_cols,
bucketing_info=bucketing_info,
mode=mode,
description=description,
parameters=parameters,
columns_comments=columns_comments,
columns_parameters=columns_parameters,
execution_engine=engine.get(),
)
# Evaluating compression
if _COMPRESSION_2_EXT.get(compression, None) is None:
raise exceptions.InvalidCompression(f"{compression} is invalid, please use None, 'snappy', 'gzip' or 'zstd'.")
compression_ext: str = _COMPRESSION_2_EXT[compression]
# Pyarrow defaults
if not pyarrow_additional_kwargs:
pyarrow_additional_kwargs = {}
if "coerce_timestamps" not in pyarrow_additional_kwargs:
pyarrow_additional_kwargs["coerce_timestamps"] = "ms"
if "flavor" not in pyarrow_additional_kwargs:
pyarrow_additional_kwargs["flavor"] = "spark"
strategy = _S3ParquetWriteStrategy()
return strategy.write(
df=df,
path=path,
index=index,
compression=compression,
pyarrow_additional_kwargs=pyarrow_additional_kwargs,
max_rows_by_file=max_rows_by_file,
use_threads=use_threads,
boto3_session=boto3_session,
s3_additional_kwargs=s3_additional_kwargs,
sanitize_columns=sanitize_columns,
dataset=dataset,
filename_prefix=filename_prefix,
partition_cols=partition_cols,
bucketing_info=bucketing_info,
concurrent_partitioning=concurrent_partitioning,
mode=mode,
catalog_versioning=catalog_versioning,
schema_evolution=schema_evolution,
database=database,
table=table,
description=description,
parameters=parameters,
columns_comments=columns_comments,
columns_parameters=columns_parameters,
table_type=table_type,
regular_partitions=regular_partitions,
dtype=dtype,
athena_partition_projection_settings=athena_partition_projection_settings,
catalog_id=catalog_id,
compression_ext=compression_ext,
encryption_configuration=encryption_configuration,
)
@apply_configs
@_utils.validate_distributed_kwargs(
unsupported_kwargs=["boto3_session"],
)
def store_parquet_metadata(
path: str,
database: str,
table: str,
catalog_id: str | None = None,
path_suffix: str | None = None,
path_ignore_suffix: str | list[str] | None = None,
ignore_empty: bool = True,
ignore_null: bool = False,
dtype: dict[str, str] | None = None,
sampling: float = 1.0,
dataset: bool = False,
use_threads: bool | int = True,
description: str | None = None,
parameters: dict[str, str] | None = None,
columns_comments: dict[str, str] | None = None,
compression: str | None = None,
mode: Literal["append", "overwrite"] = "overwrite",
catalog_versioning: bool = False,
regular_partitions: bool = True,
athena_partition_projection_settings: typing.AthenaPartitionProjectionSettings | None = None,
s3_additional_kwargs: dict[str, Any] | None = None,
boto3_session: boto3.Session | None = None,
) -> tuple[dict[str, str], dict[str, str] | None, dict[str, list[str]] | None]:
"""Infer and store parquet metadata on AWS Glue Catalog.
Infer Apache Parquet file(s) metadata from a received S3 prefix
And then stores it on AWS Glue Catalog including all inferred partitions
(No need for 'MSCK REPAIR TABLE')
The concept of Dataset goes beyond the simple idea of files and enables more
complex features like partitioning and catalog integration (AWS Glue Catalog).
This function accepts Unix shell-style wildcards in the path argument.
* (matches everything), ? (matches any single character),
[seq] (matches any character in seq), [!seq] (matches any character not in seq).
If you want to use a path which includes Unix shell-style wildcard characters (`*, ?, []`),
you can use `glob.escape(path)` before passing the path to this function.
Note
----
In case of `use_threads=True` the number of threads
that will be spawned will be gotten from os.cpu_count().
Parameters
----------
path
S3 prefix (accepts Unix shell-style wildcards) (e.g. s3://bucket/prefix).
table
Glue/Athena catalog: Table name.
database
AWS Glue Catalog database name.
catalog_id
The ID of the Data Catalog from which to retrieve Databases.
If none is provided, the AWS account ID is used by default.
path_suffix
Suffix or List of suffixes for filtering S3 keys.
path_ignore_suffix
Suffix or List of suffixes for S3 keys to be ignored.
ignore_empty
Ignore files with 0 bytes.
ignore_null
Ignore columns with null type.
dtype
Dictionary of columns names and Athena/Glue types to be casted.
Useful when you have columns with undetermined data types as partitions columns.
(e.g. {'col name': 'bigint', 'col2 name': 'int'})
sampling
Random sample ratio of files that will have the metadata inspected.
Must be `0.0 < sampling <= 1.0`.
The higher, the more accurate.
The lower, the faster.
dataset
If True read a parquet dataset instead of simple file(s) loading all the related partitions as columns.
use_threads
True to enable concurrent requests, False to disable multiple threads.
If enabled os.cpu_count() will be used as the max number of threads.
If integer is provided, specified number is used.
description
Glue/Athena catalog: Table description
parameters
Glue/Athena catalog: Key/value pairs to tag the table.
columns_comments
Glue/Athena catalog:
Columns names and the related comments (e.g. {'col0': 'Column 0.', 'col1': 'Column 1.', 'col2': 'Partition.'}).
compression
Compression style (``None``, ``snappy``, ``gzip``, etc).
mode
'overwrite' to recreate any possible existing table or 'append' to keep any possible existing table.
catalog_versioning
If True and `mode="overwrite"`, creates an archived version of the table catalog before updating it.
regular_partitions
Create regular partitions (Non projected partitions) on Glue Catalog.
Disable when you will work only with Partition Projection.
Keep enabled even when working with projections is useful to keep
Redshift Spectrum working with the regular partitions.
athena_partition_projection_settings
Parameters of the Athena Partition Projection
(https://docs.aws.amazon.com/athena/latest/ug/partition-projection.html).
AthenaPartitionProjectionSettings is a `TypedDict`, meaning the passed parameter can be instantiated either as
an instance of AthenaPartitionProjectionSettings or as a regular Python dict.
Following projection parameters are supported:
.. list-table:: Projection Parameters
:header-rows: 1
* - Name
- Type
- Description
* - projection_types
- Optional[Dict[str, str]]
- Dictionary of partitions names and Athena projections types.
Valid types: "enum", "integer", "date", "injected"
https://docs.aws.amazon.com/athena/latest/ug/partition-projection-supported-types.html
(e.g. {'col_name': 'enum', 'col2_name': 'integer'})
* - projection_ranges
- Optional[Dict[str, str]]
- Dictionary of partitions names and Athena projections ranges.
https://docs.aws.amazon.com/athena/latest/ug/partition-projection-supported-types.html
(e.g. {'col_name': '0,10', 'col2_name': '-1,8675309'})
* - projection_values
- Optional[Dict[str, str]]
- Dictionary of partitions names and Athena projections values.
https://docs.aws.amazon.com/athena/latest/ug/partition-projection-supported-types.html
(e.g. {'col_name': 'A,B,Unknown', 'col2_name': 'foo,boo,bar'})
* - projection_intervals
- Optional[Dict[str, str]]
- Dictionary of partitions names and Athena projections intervals.
https://docs.aws.amazon.com/athena/latest/ug/partition-projection-supported-types.html
(e.g. {'col_name': '1', 'col2_name': '5'})
* - projection_digits
- Optional[Dict[str, str]]
- Dictionary of partitions names and Athena projections digits.
https://docs.aws.amazon.com/athena/latest/ug/partition-projection-supported-types.html
(e.g. {'col_name': '1', 'col2_name': '2'})
* - projection_formats
- Optional[Dict[str, str]]
- Dictionary of partitions names and Athena projections formats.
https://docs.aws.amazon.com/athena/latest/ug/partition-projection-supported-types.html
(e.g. {'col_date': 'yyyy-MM-dd', 'col2_timestamp': 'yyyy-MM-dd HH:mm:ss'})
* - projection_storage_location_template
- Optional[str]
- Value which is allows Athena to properly map partition values if the S3 file locations do not follow
a typical `.../column=value/...` pattern.
https://docs.aws.amazon.com/athena/latest/ug/partition-projection-setting-up.html
(e.g. s3://bucket/table_root/a=${a}/${b}/some_static_subdirectory/${c}/)
s3_additional_kwargs
Forwarded to botocore requests.
e.g. s3_additional_kwargs={'ServerSideEncryption': 'aws:kms', 'SSEKMSKeyId': 'YOUR_KMS_KEY_ARN'}
boto3_session
The default boto3 session will be used if boto3_session receive None.
Returns
-------
The metadata used to create the Glue Table.
columns_types: Dictionary with keys as column names and values as
data types (e.g. {'col0': 'bigint', 'col1': 'double'}). /
partitions_types: Dictionary with keys as partition names
and values as data types (e.g. {'col2': 'date'}). /
partitions_values: Dictionary with keys as S3 path locations and values as a
list of partitions values as str (e.g. {'s3://bucket/prefix/y=2020/m=10/': ['2020', '10']}).
Examples
--------
Reading all Parquet files metadata under a prefix
>>> import awswrangler as wr
>>> columns_types, partitions_types, partitions_values = wr.s3.store_parquet_metadata(
... path='s3://bucket/prefix/',
... database='...',
... table='...',
... dataset=True
... )
"""
columns_types: dict[str, str]
partitions_types: dict[str, str] | None
partitions_values: dict[str, list[str]] | None
columns_types, partitions_types, partitions_values = _read_parquet_metadata(
path=path,
dtype=dtype,
sampling=sampling,
dataset=dataset,
path_suffix=path_suffix,
path_ignore_suffix=path_ignore_suffix,
ignore_empty=ignore_empty,
ignore_null=ignore_null,
use_threads=use_threads,
s3_additional_kwargs=s3_additional_kwargs,
boto3_session=boto3_session,
)
_logger.debug("Resolved columns_types: %s", columns_types)
_logger.debug("Resolved partitions_types: %s", partitions_types)
_logger.debug("Resolved partitions_values: %s", partitions_values)
catalog.create_parquet_table(
database=database,
table=table,
path=path,
columns_types=columns_types,
partitions_types=partitions_types,
description=description,
parameters=parameters,
columns_comments=columns_comments,
mode=mode,
compression=compression,
catalog_versioning=catalog_versioning,
athena_partition_projection_settings=athena_partition_projection_settings,
boto3_session=boto3_session,
catalog_id=catalog_id,
)
if (partitions_types is not None) and (partitions_values is not None) and (regular_partitions is True):
catalog.add_parquet_partitions(
database=database,
table=table,
partitions_values=partitions_values,
compression=compression,
boto3_session=boto3_session,
catalog_id=catalog_id,
columns_types=columns_types,
)
return columns_types, partitions_types, partitions_values