modules/AWSPowerShell/Cmdlets/SageMaker/Basic/New-SMTrainingJob-Cmdlet.cs (856 lines of code) (raw):

/******************************************************************************* * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"). You may not use * this file except in compliance with the License. A copy of the License is located at * * http://aws.amazon.com/apache2.0 * * or in the "license" file accompanying this file. * This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR * CONDITIONS OF ANY KIND, either express or implied. See the License for the * specific language governing permissions and limitations under the License. * ***************************************************************************** * * AWS Tools for Windows (TM) PowerShell (TM) * */ using System; using System.Collections.Generic; using System.Linq; using System.Management.Automation; using System.Text; using Amazon.PowerShell.Common; using Amazon.Runtime; using Amazon.SageMaker; using Amazon.SageMaker.Model; namespace Amazon.PowerShell.Cmdlets.SM { /// <summary> /// Starts a model training job. After training completes, SageMaker saves the resulting /// model artifacts to an Amazon S3 location that you specify. /// /// /// <para> /// If you choose to host your model using SageMaker hosting services, you can use the /// resulting model artifacts as part of the model. You can also use the artifacts in /// a machine learning service other than SageMaker, provided that you know how to use /// them for inference. /// </para><para> /// In the request body, you provide the following: /// </para><ul><li><para><c>AlgorithmSpecification</c> - Identifies the training algorithm to use. /// </para></li><li><para><c>HyperParameters</c> - Specify these algorithm-specific parameters to enable the /// estimation of model parameters during training. Hyperparameters can be tuned to optimize /// this learning process. For a list of hyperparameters for each training algorithm provided /// by SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>. /// /// </para><important><para> /// Do not include any security-sensitive information including account access IDs, secrets, /// or tokens in any hyperparameter fields. As part of the shared responsibility model, /// you are responsible for any potential exposure, unauthorized access, or compromise /// of your sensitive data if caused by security-sensitive information included in the /// request hyperparameter variable or plain text fields. /// </para></important></li><li><para><c>InputDataConfig</c> - Describes the input required by the training job and the /// Amazon S3, EFS, or FSx location where it is stored. /// </para></li><li><para><c>OutputDataConfig</c> - Identifies the Amazon S3 bucket where you want SageMaker /// to save the results of model training. /// </para></li><li><para><c>ResourceConfig</c> - Identifies the resources, ML compute instances, and ML storage /// volumes to deploy for model training. In distributed training, you specify more than /// one instance. /// </para></li><li><para><c>EnableManagedSpotTraining</c> - Optimize the cost of training machine learning /// models by up to 80% by using Amazon EC2 Spot instances. For more information, see /// <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/model-managed-spot-training.html">Managed /// Spot Training</a>. /// </para></li><li><para><c>RoleArn</c> - The Amazon Resource Name (ARN) that SageMaker assumes to perform /// tasks on your behalf during model training. You must grant this role the necessary /// permissions so that SageMaker can successfully complete model training. /// </para></li><li><para><c>StoppingCondition</c> - To help cap training costs, use <c>MaxRuntimeInSeconds</c> /// to set a time limit for training. Use <c>MaxWaitTimeInSeconds</c> to specify how long /// a managed spot training job has to complete. /// </para></li><li><para><c>Environment</c> - The environment variables to set in the Docker container. /// </para><important><para> /// Do not include any security-sensitive information including account access IDs, secrets, /// or tokens in any environment fields. As part of the shared responsibility model, you /// are responsible for any potential exposure, unauthorized access, or compromise of /// your sensitive data if caused by security-sensitive information included in the request /// environment variable or plain text fields. /// </para></important></li><li><para><c>RetryStrategy</c> - The number of times to retry the job when the job fails due /// to an <c>InternalServerError</c>. /// </para></li></ul><para> /// For more information about SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works.html">How /// It Works</a>. /// </para> /// </summary> [Cmdlet("New", "SMTrainingJob", SupportsShouldProcess = true, ConfirmImpact = ConfirmImpact.Medium)] [OutputType("System.String")] [AWSCmdlet("Calls the Amazon SageMaker Service CreateTrainingJob API operation.", Operation = new[] {"CreateTrainingJob"}, SelectReturnType = typeof(Amazon.SageMaker.Model.CreateTrainingJobResponse))] [AWSCmdletOutput("System.String or Amazon.SageMaker.Model.CreateTrainingJobResponse", "This cmdlet returns a System.String object.", "The service call response (type Amazon.SageMaker.Model.CreateTrainingJobResponse) can be returned by specifying '-Select *'." )] public partial class NewSMTrainingJobCmdlet : AmazonSageMakerClientCmdlet, IExecutor { protected override bool IsGeneratedCmdlet { get; set; } = true; #region Parameter AlgorithmSpecification /// <summary> /// <para> /// <para>The registry path of the Docker image that contains the training algorithm and algorithm-specific /// metadata, including the input mode. For more information about algorithms provided /// by SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>. /// For information about providing your own algorithms, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html">Using /// Your Own Algorithms with Amazon SageMaker</a>. </para> /// </para> /// </summary> #if !MODULAR [System.Management.Automation.Parameter(ValueFromPipelineByPropertyName = true)] #else [System.Management.Automation.Parameter(ValueFromPipelineByPropertyName = true, Mandatory = true)] [System.Management.Automation.AllowNull] #endif [Amazon.PowerShell.Common.AWSRequiredParameter] public Amazon.SageMaker.Model.AlgorithmSpecification AlgorithmSpecification { get; set; } #endregion #region Parameter DebugHookConfig_CollectionConfiguration /// <summary> /// <para> /// <para>Configuration information for Amazon SageMaker Debugger tensor collections. To learn /// more about how to configure the <c>CollectionConfiguration</c> parameter, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-createtrainingjob-api.html">Use /// the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug /// Your Training Job</a>. </para> /// </para> /// </summary> [System.Management.Automation.Parameter(ValueFromPipelineByPropertyName = true)] [Alias("DebugHookConfig_CollectionConfigurations")] public Amazon.SageMaker.Model.CollectionConfiguration[] DebugHookConfig_CollectionConfiguration { get; set; } #endregion #region Parameter DebugRuleConfiguration /// <summary> /// <para> /// <para>Configuration information for Amazon SageMaker Debugger rules for debugging output /// tensors.</para> /// </para> /// </summary> [System.Management.Automation.Parameter(ValueFromPipelineByPropertyName = true)] [Alias("DebugRuleConfigurations")] public Amazon.SageMaker.Model.DebugRuleConfiguration[] DebugRuleConfiguration { get; set; } #endregion #region Parameter ProfilerConfig_DisableProfiler /// <summary> /// <para> /// <para>Configuration to turn off Amazon SageMaker Debugger's system monitoring and profiling /// functionality. To turn it off, set to <c>True</c>.</para> /// </para> /// </summary> [System.Management.Automation.Parameter(ValueFromPipelineByPropertyName = true)] public System.Boolean? ProfilerConfig_DisableProfiler { get; set; } #endregion #region Parameter InfraCheckConfig_EnableInfraCheck /// <summary> /// <para> /// <para>Enables an infrastructure health check.</para> /// </para> /// </summary> [System.Management.Automation.Parameter(ValueFromPipelineByPropertyName = true)] public System.Boolean? InfraCheckConfig_EnableInfraCheck { get; set; } #endregion #region Parameter EnableInterContainerTrafficEncryption /// <summary> /// <para> /// <para>To encrypt all communications between ML compute instances in distributed training, /// choose <c>True</c>. Encryption provides greater security for distributed training, /// but training might take longer. How long it takes depends on the amount of communication /// between compute instances, especially if you use a deep learning algorithm in distributed /// training. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-encrypt.html">Protect /// Communications Between ML Compute Instances in a Distributed Training Job</a>.</para> /// </para> /// </summary> [System.Management.Automation.Parameter(ValueFromPipelineByPropertyName = true)] public System.Boolean? EnableInterContainerTrafficEncryption { get; set; } #endregion #region Parameter EnableManagedSpotTraining /// <summary> /// <para> /// <para>To train models using managed spot training, choose <c>True</c>. Managed spot training /// provides a fully managed and scalable infrastructure for training machine learning /// models. this option is useful when training jobs can be interrupted and when there /// is flexibility when the training job is run. </para><para>The complete and intermediate results of jobs are stored in an Amazon S3 bucket, and /// can be used as a starting point to train models incrementally. Amazon SageMaker provides /// metrics and logs in CloudWatch. They can be used to see when managed spot training /// jobs are running, interrupted, resumed, or completed. </para> /// </para> /// </summary> [System.Management.Automation.Parameter(ValueFromPipelineByPropertyName = true)] public System.Boolean? EnableManagedSpotTraining { get; set; } #endregion #region Parameter EnableNetworkIsolation /// <summary> /// <para> /// <para>Isolates the training container. No inbound or outbound network calls can be made, /// except for calls between peers within a training cluster for distributed training. /// If you enable network isolation for training jobs that are configured to use a VPC, /// SageMaker downloads and uploads customer data and model artifacts through the specified /// VPC, but the training container does not have network access.</para> /// </para> /// </summary> [System.Management.Automation.Parameter(ValueFromPipelineByPropertyName = true)] public System.Boolean? EnableNetworkIsolation { get; set; } #endregion #region Parameter RemoteDebugConfig_EnableRemoteDebug /// <summary> /// <para> /// <para>If set to True, enables remote debugging.</para> /// </para> /// </summary> [System.Management.Automation.Parameter(ValueFromPipelineByPropertyName = true)] public System.Boolean? RemoteDebugConfig_EnableRemoteDebug { get; set; } #endregion #region Parameter SessionChainingConfig_EnableSessionTagChaining /// <summary> /// <para> /// <para>Set to <c>True</c> to allow SageMaker to extract session tags from a training job /// creation role and reuse these tags when assuming the training job execution role.</para> /// </para> /// </summary> [System.Management.Automation.Parameter(ValueFromPipelineByPropertyName = true)] public System.Boolean? SessionChainingConfig_EnableSessionTagChaining { get; set; } #endregion #region Parameter Environment /// <summary> /// <para> /// <para>The environment variables to set in the Docker container.</para><important><para>Do not include any security-sensitive information including account access IDs, secrets, /// or tokens in any environment fields. As part of the shared responsibility model, you /// are responsible for any potential exposure, unauthorized access, or compromise of /// your sensitive data if caused by security-sensitive information included in the request /// environment variable or plain text fields.</para></important> /// </para> /// </summary> [System.Management.Automation.Parameter(ValueFromPipelineByPropertyName = true)] public System.Collections.Hashtable Environment { get; set; } #endregion #region Parameter ExperimentConfig_ExperimentName /// <summary> /// <para> /// <para>The name of an existing experiment to associate with the trial component.</para> /// </para> /// </summary> [System.Management.Automation.Parameter(ValueFromPipelineByPropertyName = true)] public System.String ExperimentConfig_ExperimentName { get; set; } #endregion #region Parameter DebugHookConfig_HookParameter /// <summary> /// <para> /// <para>Configuration information for the Amazon SageMaker Debugger hook parameters.</para> /// </para> /// </summary> [System.Management.Automation.Parameter(ValueFromPipelineByPropertyName = true)] [Alias("DebugHookConfig_HookParameters")] public System.Collections.Hashtable DebugHookConfig_HookParameter { get; set; } #endregion #region Parameter HyperParameter /// <summary> /// <para> /// <para>Algorithm-specific parameters that influence the quality of the model. You set hyperparameters /// before you start the learning process. For a list of hyperparameters for each training /// algorithm provided by SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>. /// </para><para>You can specify a maximum of 100 hyperparameters. Each hyperparameter is a key-value /// pair. Each key and value is limited to 256 characters, as specified by the <c>Length /// Constraint</c>. </para><important><para>Do not include any security-sensitive information including account access IDs, secrets, /// or tokens in any hyperparameter fields. As part of the shared responsibility model, /// you are responsible for any potential exposure, unauthorized access, or compromise /// of your sensitive data if caused by any security-sensitive information included in /// the request hyperparameter variable or plain text fields.</para></important> /// </para> /// </summary> [System.Management.Automation.Parameter(ValueFromPipelineByPropertyName = true)] [Alias("HyperParameters")] public System.Collections.Hashtable HyperParameter { get; set; } #endregion #region Parameter InputDataConfig /// <summary> /// <para> /// <para>An array of <c>Channel</c> objects. Each channel is a named input source. <c>InputDataConfig</c> /// describes the input data and its location. </para><para>Algorithms can accept input data from one or more channels. For example, an algorithm /// might have two channels of input data, <c>training_data</c> and <c>validation_data</c>. /// The configuration for each channel provides the S3, EFS, or FSx location where the /// input data is stored. It also provides information about the stored data: the MIME /// type, compression method, and whether the data is wrapped in RecordIO format. </para><para>Depending on the input mode that the algorithm supports, SageMaker either copies input /// data files from an S3 bucket to a local directory in the Docker container, or makes /// it available as input streams. For example, if you specify an EFS location, input /// data files are available as input streams. They do not need to be downloaded.</para><para>Your input must be in the same Amazon Web Services region as your training job.</para> /// </para> /// </summary> [System.Management.Automation.Parameter(ValueFromPipelineByPropertyName = true)] public Amazon.SageMaker.Model.Channel[] InputDataConfig { get; set; } #endregion #region Parameter CheckpointConfig_LocalPath /// <summary> /// <para> /// <para>(Optional) The local directory where checkpoints are written. The default directory /// is <c>/opt/ml/checkpoints/</c>. </para> /// </para> /// </summary> [System.Management.Automation.Parameter(ValueFromPipelineByPropertyName = true)] public System.String CheckpointConfig_LocalPath { get; set; } #endregion #region Parameter DebugHookConfig_LocalPath /// <summary> /// <para> /// <para>Path to local storage location for metrics and tensors. Defaults to <c>/opt/ml/output/tensors/</c>.</para> /// </para> /// </summary> [System.Management.Automation.Parameter(ValueFromPipelineByPropertyName = true)] public System.String DebugHookConfig_LocalPath { get; set; } #endregion #region Parameter TensorBoardOutputConfig_LocalPath /// <summary> /// <para> /// <para>Path to local storage location for tensorBoard output. Defaults to <c>/opt/ml/output/tensorboard</c>.</para> /// </para> /// </summary> [System.Management.Automation.Parameter(ValueFromPipelineByPropertyName = true)] public System.String TensorBoardOutputConfig_LocalPath { get; set; } #endregion #region Parameter RetryStrategy_MaximumRetryAttempt /// <summary> /// <para> /// <para>The number of times to retry the job. When the job is retried, it's <c>SecondaryStatus</c> /// is changed to <c>STARTING</c>.</para> /// </para> /// </summary> [System.Management.Automation.Parameter(ValueFromPipelineByPropertyName = true)] [Alias("RetryStrategy_MaximumRetryAttempts")] public System.Int32? RetryStrategy_MaximumRetryAttempt { get; set; } #endregion #region Parameter StoppingCondition_MaxPendingTimeInSecond /// <summary> /// <para> /// <para>The maximum length of time, in seconds, that a training or compilation job can be /// pending before it is stopped.</para><note><para>When working with training jobs that use capacity from <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/reserve-capacity-with-training-plans.html">training /// plans</a>, not all <c>Pending</c> job states count against the <c>MaxPendingTimeInSeconds</c> /// limit. The following scenarios do not increment the <c>MaxPendingTimeInSeconds</c> /// counter:</para><ul><li><para>The plan is in a <c>Scheduled</c> state: Jobs queued (in <c>Pending</c> status) before /// a plan's start date (waiting for scheduled start time)</para></li><li><para>Between capacity reservations: Jobs temporarily back to <c>Pending</c> status between /// two capacity reservation periods</para></li></ul><para><c>MaxPendingTimeInSeconds</c> only increments when jobs are actively waiting for /// capacity in an <c>Active</c> plan.</para></note> /// </para> /// </summary> [System.Management.Automation.Parameter(ValueFromPipelineByPropertyName = true)] [Alias("StoppingCondition_MaxPendingTimeInSeconds")] public System.Int32? StoppingCondition_MaxPendingTimeInSecond { get; set; } #endregion #region Parameter StoppingCondition_MaxRuntimeInSecond /// <summary> /// <para> /// <para>The maximum length of time, in seconds, that a training or compilation job can run /// before it is stopped.</para><para>For compilation jobs, if the job does not complete during this time, a <c>TimeOut</c> /// error is generated. We recommend starting with 900 seconds and increasing as necessary /// based on your model.</para><para>For all other jobs, if the job does not complete during this time, SageMaker ends /// the job. When <c>RetryStrategy</c> is specified in the job request, <c>MaxRuntimeInSeconds</c> /// specifies the maximum time for all of the attempts in total, not each individual attempt. /// The default value is 1 day. The maximum value is 28 days.</para><para>The maximum time that a <c>TrainingJob</c> can run in total, including any time spent /// publishing metrics or archiving and uploading models after it has been stopped, is /// 30 days.</para> /// </para> /// </summary> [System.Management.Automation.Parameter(ValueFromPipelineByPropertyName = true)] [Alias("StoppingCondition_MaxRuntimeInSeconds")] public System.Int32? StoppingCondition_MaxRuntimeInSecond { get; set; } #endregion #region Parameter StoppingCondition_MaxWaitTimeInSecond /// <summary> /// <para> /// <para>The maximum length of time, in seconds, that a managed Spot training job has to complete. /// It is the amount of time spent waiting for Spot capacity plus the amount of time the /// job can run. It must be equal to or greater than <c>MaxRuntimeInSeconds</c>. If the /// job does not complete during this time, SageMaker ends the job.</para><para>When <c>RetryStrategy</c> is specified in the job request, <c>MaxWaitTimeInSeconds</c> /// specifies the maximum time for all of the attempts in total, not each individual attempt.</para> /// </para> /// </summary> [System.Management.Automation.Parameter(ValueFromPipelineByPropertyName = true)] [Alias("StoppingCondition_MaxWaitTimeInSeconds")] public System.Int32? StoppingCondition_MaxWaitTimeInSecond { get; set; } #endregion #region Parameter OutputDataConfig /// <summary> /// <para> /// <para>Specifies the path to the S3 location where you want to store model artifacts. SageMaker /// creates subfolders for the artifacts. </para> /// </para> /// </summary> #if !MODULAR [System.Management.Automation.Parameter(ValueFromPipelineByPropertyName = true)] #else [System.Management.Automation.Parameter(ValueFromPipelineByPropertyName = true, Mandatory = true)] [System.Management.Automation.AllowNull] #endif [Amazon.PowerShell.Common.AWSRequiredParameter] public Amazon.SageMaker.Model.OutputDataConfig OutputDataConfig { get; set; } #endregion #region Parameter ProfilerRuleConfiguration /// <summary> /// <para> /// <para>Configuration information for Amazon SageMaker Debugger rules for profiling system /// and framework metrics.</para> /// </para> /// </summary> [System.Management.Automation.Parameter(ValueFromPipelineByPropertyName = true)] [Alias("ProfilerRuleConfigurations")] public Amazon.SageMaker.Model.ProfilerRuleConfiguration[] ProfilerRuleConfiguration { get; set; } #endregion #region Parameter ProfilerConfig_ProfilingIntervalInMillisecond /// <summary> /// <para> /// <para>A time interval for capturing system metrics in milliseconds. Available values are /// 100, 200, 500, 1000 (1 second), 5000 (5 seconds), and 60000 (1 minute) milliseconds. /// The default value is 500 milliseconds.</para> /// </para> /// </summary> [System.Management.Automation.Parameter(ValueFromPipelineByPropertyName = true)] [Alias("ProfilerConfig_ProfilingIntervalInMilliseconds")] public System.Int64? ProfilerConfig_ProfilingIntervalInMillisecond { get; set; } #endregion #region Parameter ProfilerConfig_ProfilingParameter /// <summary> /// <para> /// <para>Configuration information for capturing framework metrics. Available key strings for /// different profiling options are <c>DetailedProfilingConfig</c>, <c>PythonProfilingConfig</c>, /// and <c>DataLoaderProfilingConfig</c>. The following codes are configuration structures /// for the <c>ProfilingParameters</c> parameter. To learn more about how to configure /// the <c>ProfilingParameters</c> parameter, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-createtrainingjob-api.html">Use /// the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug /// Your Training Job</a>. </para> /// </para> /// </summary> [System.Management.Automation.Parameter(ValueFromPipelineByPropertyName = true)] [Alias("ProfilerConfig_ProfilingParameters")] public System.Collections.Hashtable ProfilerConfig_ProfilingParameter { get; set; } #endregion #region Parameter ResourceConfig /// <summary> /// <para> /// <para>The resources, including the ML compute instances and ML storage volumes, to use for /// model training. </para><para>ML storage volumes store model artifacts and incremental states. Training algorithms /// might also use ML storage volumes for scratch space. If you want SageMaker to use /// the ML storage volume to store the training data, choose <c>File</c> as the <c>TrainingInputMode</c> /// in the algorithm specification. For distributed training algorithms, specify an instance /// count greater than 1.</para> /// </para> /// </summary> #if !MODULAR [System.Management.Automation.Parameter(ValueFromPipelineByPropertyName = true)] #else [System.Management.Automation.Parameter(ValueFromPipelineByPropertyName = true, Mandatory = true)] [System.Management.Automation.AllowNull] #endif [Amazon.PowerShell.Common.AWSRequiredParameter] public Amazon.SageMaker.Model.ResourceConfig ResourceConfig { get; set; } #endregion #region Parameter RoleArn /// <summary> /// <para> /// <para>The Amazon Resource Name (ARN) of an IAM role that SageMaker can assume to perform /// tasks on your behalf. </para><para>During model training, SageMaker needs your permission to read input data from an /// S3 bucket, download a Docker image that contains training code, write model artifacts /// to an S3 bucket, write logs to Amazon CloudWatch Logs, and publish metrics to Amazon /// CloudWatch. You grant permissions for all of these tasks to an IAM role. For more /// information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html">SageMaker /// Roles</a>. </para><note><para>To be able to pass this role to SageMaker, the caller of this API must have the <c>iam:PassRole</c> /// permission.</para></note> /// </para> /// </summary> #if !MODULAR [System.Management.Automation.Parameter(ValueFromPipelineByPropertyName = true)] #else [System.Management.Automation.Parameter(ValueFromPipelineByPropertyName = true, Mandatory = true)] [System.Management.Automation.AllowEmptyString] [System.Management.Automation.AllowNull] #endif [Amazon.PowerShell.Common.AWSRequiredParameter] public System.String RoleArn { get; set; } #endregion #region Parameter ExperimentConfig_RunName /// <summary> /// <para> /// <para>The name of the experiment run to associate with the trial component.</para> /// </para> /// </summary> [System.Management.Automation.Parameter(ValueFromPipelineByPropertyName = true)] public System.String ExperimentConfig_RunName { get; set; } #endregion #region Parameter DebugHookConfig_S3OutputPath /// <summary> /// <para> /// <para>Path to Amazon S3 storage location for metrics and tensors.</para> /// </para> /// </summary> [System.Management.Automation.Parameter(ValueFromPipelineByPropertyName = true)] public System.String DebugHookConfig_S3OutputPath { get; set; } #endregion #region Parameter ProfilerConfig_S3OutputPath /// <summary> /// <para> /// <para>Path to Amazon S3 storage location for system and framework metrics.</para> /// </para> /// </summary> [System.Management.Automation.Parameter(ValueFromPipelineByPropertyName = true)] public System.String ProfilerConfig_S3OutputPath { get; set; } #endregion #region Parameter TensorBoardOutputConfig_S3OutputPath /// <summary> /// <para> /// <para>Path to Amazon S3 storage location for TensorBoard output.</para> /// </para> /// </summary> [System.Management.Automation.Parameter(ValueFromPipelineByPropertyName = true)] public System.String TensorBoardOutputConfig_S3OutputPath { get; set; } #endregion #region Parameter CheckpointConfig_S3Uri /// <summary> /// <para> /// <para>Identifies the S3 path where you want SageMaker to store checkpoints. For example, /// <c>s3://bucket-name/key-name-prefix</c>.</para> /// </para> /// </summary> [System.Management.Automation.Parameter(ValueFromPipelineByPropertyName = true)] public System.String CheckpointConfig_S3Uri { get; set; } #endregion #region Parameter VpcConfig_SecurityGroupId /// <summary> /// <para> /// <para>The VPC security group IDs, in the form <c>sg-xxxxxxxx</c>. Specify the security groups /// for the VPC that is specified in the <c>Subnets</c> field.</para> /// </para> /// </summary> [System.Management.Automation.Parameter(ValueFromPipelineByPropertyName = true)] [Alias("VpcConfig_SecurityGroupIds")] public System.String[] VpcConfig_SecurityGroupId { get; set; } #endregion #region Parameter VpcConfig_Subnet /// <summary> /// <para> /// <para>The ID of the subnets in the VPC to which you want to connect your training job or /// model. For information about the availability of specific instance types, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/instance-types-az.html">Supported /// Instance Types and Availability Zones</a>.</para> /// </para> /// </summary> [System.Management.Automation.Parameter(ValueFromPipelineByPropertyName = true)] [Alias("VpcConfig_Subnets")] public System.String[] VpcConfig_Subnet { get; set; } #endregion #region Parameter Tag /// <summary> /// <para> /// <para>An array of key-value pairs. You can use tags to categorize your Amazon Web Services /// resources in different ways, for example, by purpose, owner, or environment. For more /// information, see <a href="https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html">Tagging /// Amazon Web Services Resources</a>.</para><important><para>Do not include any security-sensitive information including account access IDs, secrets, /// or tokens in any tags. As part of the shared responsibility model, you are responsible /// for any potential exposure, unauthorized access, or compromise of your sensitive data /// if caused by any security-sensitive information included in the request tag variable /// or plain text fields.</para></important> /// </para> /// </summary> [System.Management.Automation.Parameter(ValueFromPipelineByPropertyName = true)] [Alias("Tags")] public Amazon.SageMaker.Model.Tag[] Tag { get; set; } #endregion #region Parameter TrainingJobName /// <summary> /// <para> /// <para>The name of the training job. The name must be unique within an Amazon Web Services /// Region in an Amazon Web Services account. </para> /// </para> /// </summary> #if !MODULAR [System.Management.Automation.Parameter(Position = 0, ValueFromPipelineByPropertyName = true, ValueFromPipeline = true)] #else [System.Management.Automation.Parameter(Position = 0, ValueFromPipelineByPropertyName = true, ValueFromPipeline = true, Mandatory = true)] [System.Management.Automation.AllowEmptyString] [System.Management.Automation.AllowNull] #endif [Amazon.PowerShell.Common.AWSRequiredParameter] public System.String TrainingJobName { get; set; } #endregion #region Parameter ExperimentConfig_TrialComponentDisplayName /// <summary> /// <para> /// <para>The display name for the trial component. If this key isn't specified, the display /// name is the trial component name.</para> /// </para> /// </summary> [System.Management.Automation.Parameter(ValueFromPipelineByPropertyName = true)] public System.String ExperimentConfig_TrialComponentDisplayName { get; set; } #endregion #region Parameter ExperimentConfig_TrialName /// <summary> /// <para> /// <para>The name of an existing trial to associate the trial component with. If not specified, /// a new trial is created.</para> /// </para> /// </summary> [System.Management.Automation.Parameter(ValueFromPipelineByPropertyName = true)] public System.String ExperimentConfig_TrialName { get; set; } #endregion #region Parameter Select /// <summary> /// Use the -Select parameter to control the cmdlet output. The default value is 'TrainingJobArn'. /// Specifying -Select '*' will result in the cmdlet returning the whole service response (Amazon.SageMaker.Model.CreateTrainingJobResponse). /// Specifying the name of a property of type Amazon.SageMaker.Model.CreateTrainingJobResponse will result in that property being returned. /// Specifying -Select '^ParameterName' will result in the cmdlet returning the selected cmdlet parameter value. /// </summary> [System.Management.Automation.Parameter(ValueFromPipelineByPropertyName = true)] public string Select { get; set; } = "TrainingJobArn"; #endregion #region Parameter PassThru /// <summary> /// Changes the cmdlet behavior to return the value passed to the TrainingJobName parameter. /// The -PassThru parameter is deprecated, use -Select '^TrainingJobName' instead. This parameter will be removed in a future version. /// </summary> [System.Obsolete("The -PassThru parameter is deprecated, use -Select '^TrainingJobName' instead. This parameter will be removed in a future version.")] [System.Management.Automation.Parameter(ValueFromPipelineByPropertyName = true)] public SwitchParameter PassThru { get; set; } #endregion #region Parameter Force /// <summary> /// This parameter overrides confirmation prompts to force /// the cmdlet to continue its operation. This parameter should always /// be used with caution. /// </summary> [System.Management.Automation.Parameter(ValueFromPipelineByPropertyName = true)] public SwitchParameter Force { get; set; } #endregion protected override void ProcessRecord() { this._AWSSignerType = "v4"; base.ProcessRecord(); var resourceIdentifiersText = FormatParameterValuesForConfirmationMsg(nameof(this.TrainingJobName), MyInvocation.BoundParameters); if (!ConfirmShouldProceed(this.Force.IsPresent, resourceIdentifiersText, "New-SMTrainingJob (CreateTrainingJob)")) { return; } var context = new CmdletContext(); // allow for manipulation of parameters prior to loading into context PreExecutionContextLoad(context); #pragma warning disable CS0618, CS0612 //A class member was marked with the Obsolete attribute if (ParameterWasBound(nameof(this.Select))) { context.Select = CreateSelectDelegate<Amazon.SageMaker.Model.CreateTrainingJobResponse, NewSMTrainingJobCmdlet>(Select) ?? throw new System.ArgumentException("Invalid value for -Select parameter.", nameof(this.Select)); if (this.PassThru.IsPresent) { throw new System.ArgumentException("-PassThru cannot be used when -Select is specified.", nameof(this.Select)); } } else if (this.PassThru.IsPresent) { context.Select = (response, cmdlet) => this.TrainingJobName; } #pragma warning restore CS0618, CS0612 //A class member was marked with the Obsolete attribute context.AlgorithmSpecification = this.AlgorithmSpecification; #if MODULAR if (this.AlgorithmSpecification == null && ParameterWasBound(nameof(this.AlgorithmSpecification))) { WriteWarning("You are passing $null as a value for parameter AlgorithmSpecification which is marked as required. In case you believe this parameter was incorrectly marked as required, report this by opening an issue at https://github.com/aws/aws-tools-for-powershell/issues."); } #endif context.CheckpointConfig_LocalPath = this.CheckpointConfig_LocalPath; context.CheckpointConfig_S3Uri = this.CheckpointConfig_S3Uri; if (this.DebugHookConfig_CollectionConfiguration != null) { context.DebugHookConfig_CollectionConfiguration = new List<Amazon.SageMaker.Model.CollectionConfiguration>(this.DebugHookConfig_CollectionConfiguration); } if (this.DebugHookConfig_HookParameter != null) { context.DebugHookConfig_HookParameter = new Dictionary<System.String, System.String>(StringComparer.Ordinal); foreach (var hashKey in this.DebugHookConfig_HookParameter.Keys) { context.DebugHookConfig_HookParameter.Add((String)hashKey, (System.String)(this.DebugHookConfig_HookParameter[hashKey])); } } context.DebugHookConfig_LocalPath = this.DebugHookConfig_LocalPath; context.DebugHookConfig_S3OutputPath = this.DebugHookConfig_S3OutputPath; if (this.DebugRuleConfiguration != null) { context.DebugRuleConfiguration = new List<Amazon.SageMaker.Model.DebugRuleConfiguration>(this.DebugRuleConfiguration); } context.EnableInterContainerTrafficEncryption = this.EnableInterContainerTrafficEncryption; context.EnableManagedSpotTraining = this.EnableManagedSpotTraining; context.EnableNetworkIsolation = this.EnableNetworkIsolation; if (this.Environment != null) { context.Environment = new Dictionary<System.String, System.String>(StringComparer.Ordinal); foreach (var hashKey in this.Environment.Keys) { context.Environment.Add((String)hashKey, (System.String)(this.Environment[hashKey])); } } context.ExperimentConfig_ExperimentName = this.ExperimentConfig_ExperimentName; context.ExperimentConfig_RunName = this.ExperimentConfig_RunName; context.ExperimentConfig_TrialComponentDisplayName = this.ExperimentConfig_TrialComponentDisplayName; context.ExperimentConfig_TrialName = this.ExperimentConfig_TrialName; if (this.HyperParameter != null) { context.HyperParameter = new Dictionary<System.String, System.String>(StringComparer.Ordinal); foreach (var hashKey in this.HyperParameter.Keys) { context.HyperParameter.Add((String)hashKey, (System.String)(this.HyperParameter[hashKey])); } } context.InfraCheckConfig_EnableInfraCheck = this.InfraCheckConfig_EnableInfraCheck; if (this.InputDataConfig != null) { context.InputDataConfig = new List<Amazon.SageMaker.Model.Channel>(this.InputDataConfig); } context.OutputDataConfig = this.OutputDataConfig; #if MODULAR if (this.OutputDataConfig == null && ParameterWasBound(nameof(this.OutputDataConfig))) { WriteWarning("You are passing $null as a value for parameter OutputDataConfig which is marked as required. In case you believe this parameter was incorrectly marked as required, report this by opening an issue at https://github.com/aws/aws-tools-for-powershell/issues."); } #endif context.ProfilerConfig_DisableProfiler = this.ProfilerConfig_DisableProfiler; context.ProfilerConfig_ProfilingIntervalInMillisecond = this.ProfilerConfig_ProfilingIntervalInMillisecond; if (this.ProfilerConfig_ProfilingParameter != null) { context.ProfilerConfig_ProfilingParameter = new Dictionary<System.String, System.String>(StringComparer.Ordinal); foreach (var hashKey in this.ProfilerConfig_ProfilingParameter.Keys) { context.ProfilerConfig_ProfilingParameter.Add((String)hashKey, (System.String)(this.ProfilerConfig_ProfilingParameter[hashKey])); } } context.ProfilerConfig_S3OutputPath = this.ProfilerConfig_S3OutputPath; if (this.ProfilerRuleConfiguration != null) { context.ProfilerRuleConfiguration = new List<Amazon.SageMaker.Model.ProfilerRuleConfiguration>(this.ProfilerRuleConfiguration); } context.RemoteDebugConfig_EnableRemoteDebug = this.RemoteDebugConfig_EnableRemoteDebug; context.ResourceConfig = this.ResourceConfig; #if MODULAR if (this.ResourceConfig == null && ParameterWasBound(nameof(this.ResourceConfig))) { WriteWarning("You are passing $null as a value for parameter ResourceConfig which is marked as required. In case you believe this parameter was incorrectly marked as required, report this by opening an issue at https://github.com/aws/aws-tools-for-powershell/issues."); } #endif context.RetryStrategy_MaximumRetryAttempt = this.RetryStrategy_MaximumRetryAttempt; context.RoleArn = this.RoleArn; #if MODULAR if (this.RoleArn == null && ParameterWasBound(nameof(this.RoleArn))) { WriteWarning("You are passing $null as a value for parameter RoleArn which is marked as required. In case you believe this parameter was incorrectly marked as required, report this by opening an issue at https://github.com/aws/aws-tools-for-powershell/issues."); } #endif context.SessionChainingConfig_EnableSessionTagChaining = this.SessionChainingConfig_EnableSessionTagChaining; context.StoppingCondition_MaxPendingTimeInSecond = this.StoppingCondition_MaxPendingTimeInSecond; context.StoppingCondition_MaxRuntimeInSecond = this.StoppingCondition_MaxRuntimeInSecond; context.StoppingCondition_MaxWaitTimeInSecond = this.StoppingCondition_MaxWaitTimeInSecond; if (this.Tag != null) { context.Tag = new List<Amazon.SageMaker.Model.Tag>(this.Tag); } context.TensorBoardOutputConfig_LocalPath = this.TensorBoardOutputConfig_LocalPath; context.TensorBoardOutputConfig_S3OutputPath = this.TensorBoardOutputConfig_S3OutputPath; context.TrainingJobName = this.TrainingJobName; #if MODULAR if (this.TrainingJobName == null && ParameterWasBound(nameof(this.TrainingJobName))) { WriteWarning("You are passing $null as a value for parameter TrainingJobName which is marked as required. In case you believe this parameter was incorrectly marked as required, report this by opening an issue at https://github.com/aws/aws-tools-for-powershell/issues."); } #endif if (this.VpcConfig_SecurityGroupId != null) { context.VpcConfig_SecurityGroupId = new List<System.String>(this.VpcConfig_SecurityGroupId); } if (this.VpcConfig_Subnet != null) { context.VpcConfig_Subnet = new List<System.String>(this.VpcConfig_Subnet); } // allow further manipulation of loaded context prior to processing PostExecutionContextLoad(context); var output = Execute(context) as CmdletOutput; ProcessOutput(output); } #region IExecutor Members public object Execute(ExecutorContext context) { var cmdletContext = context as CmdletContext; // create request var request = new Amazon.SageMaker.Model.CreateTrainingJobRequest(); if (cmdletContext.AlgorithmSpecification != null) { request.AlgorithmSpecification = cmdletContext.AlgorithmSpecification; } // populate CheckpointConfig var requestCheckpointConfigIsNull = true; request.CheckpointConfig = new Amazon.SageMaker.Model.CheckpointConfig(); System.String requestCheckpointConfig_checkpointConfig_LocalPath = null; if (cmdletContext.CheckpointConfig_LocalPath != null) { requestCheckpointConfig_checkpointConfig_LocalPath = cmdletContext.CheckpointConfig_LocalPath; } if (requestCheckpointConfig_checkpointConfig_LocalPath != null) { request.CheckpointConfig.LocalPath = requestCheckpointConfig_checkpointConfig_LocalPath; requestCheckpointConfigIsNull = false; } System.String requestCheckpointConfig_checkpointConfig_S3Uri = null; if (cmdletContext.CheckpointConfig_S3Uri != null) { requestCheckpointConfig_checkpointConfig_S3Uri = cmdletContext.CheckpointConfig_S3Uri; } if (requestCheckpointConfig_checkpointConfig_S3Uri != null) { request.CheckpointConfig.S3Uri = requestCheckpointConfig_checkpointConfig_S3Uri; requestCheckpointConfigIsNull = false; } // determine if request.CheckpointConfig should be set to null if (requestCheckpointConfigIsNull) { request.CheckpointConfig = null; } // populate DebugHookConfig var requestDebugHookConfigIsNull = true; request.DebugHookConfig = new Amazon.SageMaker.Model.DebugHookConfig(); List<Amazon.SageMaker.Model.CollectionConfiguration> requestDebugHookConfig_debugHookConfig_CollectionConfiguration = null; if (cmdletContext.DebugHookConfig_CollectionConfiguration != null) { requestDebugHookConfig_debugHookConfig_CollectionConfiguration = cmdletContext.DebugHookConfig_CollectionConfiguration; } if (requestDebugHookConfig_debugHookConfig_CollectionConfiguration != null) { request.DebugHookConfig.CollectionConfigurations = requestDebugHookConfig_debugHookConfig_CollectionConfiguration; requestDebugHookConfigIsNull = false; } Dictionary<System.String, System.String> requestDebugHookConfig_debugHookConfig_HookParameter = null; if (cmdletContext.DebugHookConfig_HookParameter != null) { requestDebugHookConfig_debugHookConfig_HookParameter = cmdletContext.DebugHookConfig_HookParameter; } if (requestDebugHookConfig_debugHookConfig_HookParameter != null) { request.DebugHookConfig.HookParameters = requestDebugHookConfig_debugHookConfig_HookParameter; requestDebugHookConfigIsNull = false; } System.String requestDebugHookConfig_debugHookConfig_LocalPath = null; if (cmdletContext.DebugHookConfig_LocalPath != null) { requestDebugHookConfig_debugHookConfig_LocalPath = cmdletContext.DebugHookConfig_LocalPath; } if (requestDebugHookConfig_debugHookConfig_LocalPath != null) { request.DebugHookConfig.LocalPath = requestDebugHookConfig_debugHookConfig_LocalPath; requestDebugHookConfigIsNull = false; } System.String requestDebugHookConfig_debugHookConfig_S3OutputPath = null; if (cmdletContext.DebugHookConfig_S3OutputPath != null) { requestDebugHookConfig_debugHookConfig_S3OutputPath = cmdletContext.DebugHookConfig_S3OutputPath; } if (requestDebugHookConfig_debugHookConfig_S3OutputPath != null) { request.DebugHookConfig.S3OutputPath = requestDebugHookConfig_debugHookConfig_S3OutputPath; requestDebugHookConfigIsNull = false; } // determine if request.DebugHookConfig should be set to null if (requestDebugHookConfigIsNull) { request.DebugHookConfig = null; } if (cmdletContext.DebugRuleConfiguration != null) { request.DebugRuleConfigurations = cmdletContext.DebugRuleConfiguration; } if (cmdletContext.EnableInterContainerTrafficEncryption != null) { request.EnableInterContainerTrafficEncryption = cmdletContext.EnableInterContainerTrafficEncryption.Value; } if (cmdletContext.EnableManagedSpotTraining != null) { request.EnableManagedSpotTraining = cmdletContext.EnableManagedSpotTraining.Value; } if (cmdletContext.EnableNetworkIsolation != null) { request.EnableNetworkIsolation = cmdletContext.EnableNetworkIsolation.Value; } if (cmdletContext.Environment != null) { request.Environment = cmdletContext.Environment; } // populate ExperimentConfig var requestExperimentConfigIsNull = true; request.ExperimentConfig = new Amazon.SageMaker.Model.ExperimentConfig(); System.String requestExperimentConfig_experimentConfig_ExperimentName = null; if (cmdletContext.ExperimentConfig_ExperimentName != null) { requestExperimentConfig_experimentConfig_ExperimentName = cmdletContext.ExperimentConfig_ExperimentName; } if (requestExperimentConfig_experimentConfig_ExperimentName != null) { request.ExperimentConfig.ExperimentName = requestExperimentConfig_experimentConfig_ExperimentName; requestExperimentConfigIsNull = false; } System.String requestExperimentConfig_experimentConfig_RunName = null; if (cmdletContext.ExperimentConfig_RunName != null) { requestExperimentConfig_experimentConfig_RunName = cmdletContext.ExperimentConfig_RunName; } if (requestExperimentConfig_experimentConfig_RunName != null) { request.ExperimentConfig.RunName = requestExperimentConfig_experimentConfig_RunName; requestExperimentConfigIsNull = false; } System.String requestExperimentConfig_experimentConfig_TrialComponentDisplayName = null; if (cmdletContext.ExperimentConfig_TrialComponentDisplayName != null) { requestExperimentConfig_experimentConfig_TrialComponentDisplayName = cmdletContext.ExperimentConfig_TrialComponentDisplayName; } if (requestExperimentConfig_experimentConfig_TrialComponentDisplayName != null) { request.ExperimentConfig.TrialComponentDisplayName = requestExperimentConfig_experimentConfig_TrialComponentDisplayName; requestExperimentConfigIsNull = false; } System.String requestExperimentConfig_experimentConfig_TrialName = null; if (cmdletContext.ExperimentConfig_TrialName != null) { requestExperimentConfig_experimentConfig_TrialName = cmdletContext.ExperimentConfig_TrialName; } if (requestExperimentConfig_experimentConfig_TrialName != null) { request.ExperimentConfig.TrialName = requestExperimentConfig_experimentConfig_TrialName; requestExperimentConfigIsNull = false; } // determine if request.ExperimentConfig should be set to null if (requestExperimentConfigIsNull) { request.ExperimentConfig = null; } if (cmdletContext.HyperParameter != null) { request.HyperParameters = cmdletContext.HyperParameter; } // populate InfraCheckConfig var requestInfraCheckConfigIsNull = true; request.InfraCheckConfig = new Amazon.SageMaker.Model.InfraCheckConfig(); System.Boolean? requestInfraCheckConfig_infraCheckConfig_EnableInfraCheck = null; if (cmdletContext.InfraCheckConfig_EnableInfraCheck != null) { requestInfraCheckConfig_infraCheckConfig_EnableInfraCheck = cmdletContext.InfraCheckConfig_EnableInfraCheck.Value; } if (requestInfraCheckConfig_infraCheckConfig_EnableInfraCheck != null) { request.InfraCheckConfig.EnableInfraCheck = requestInfraCheckConfig_infraCheckConfig_EnableInfraCheck.Value; requestInfraCheckConfigIsNull = false; } // determine if request.InfraCheckConfig should be set to null if (requestInfraCheckConfigIsNull) { request.InfraCheckConfig = null; } if (cmdletContext.InputDataConfig != null) { request.InputDataConfig = cmdletContext.InputDataConfig; } if (cmdletContext.OutputDataConfig != null) { request.OutputDataConfig = cmdletContext.OutputDataConfig; } // populate ProfilerConfig var requestProfilerConfigIsNull = true; request.ProfilerConfig = new Amazon.SageMaker.Model.ProfilerConfig(); System.Boolean? requestProfilerConfig_profilerConfig_DisableProfiler = null; if (cmdletContext.ProfilerConfig_DisableProfiler != null) { requestProfilerConfig_profilerConfig_DisableProfiler = cmdletContext.ProfilerConfig_DisableProfiler.Value; } if (requestProfilerConfig_profilerConfig_DisableProfiler != null) { request.ProfilerConfig.DisableProfiler = requestProfilerConfig_profilerConfig_DisableProfiler.Value; requestProfilerConfigIsNull = false; } System.Int64? requestProfilerConfig_profilerConfig_ProfilingIntervalInMillisecond = null; if (cmdletContext.ProfilerConfig_ProfilingIntervalInMillisecond != null) { requestProfilerConfig_profilerConfig_ProfilingIntervalInMillisecond = cmdletContext.ProfilerConfig_ProfilingIntervalInMillisecond.Value; } if (requestProfilerConfig_profilerConfig_ProfilingIntervalInMillisecond != null) { request.ProfilerConfig.ProfilingIntervalInMilliseconds = requestProfilerConfig_profilerConfig_ProfilingIntervalInMillisecond.Value; requestProfilerConfigIsNull = false; } Dictionary<System.String, System.String> requestProfilerConfig_profilerConfig_ProfilingParameter = null; if (cmdletContext.ProfilerConfig_ProfilingParameter != null) { requestProfilerConfig_profilerConfig_ProfilingParameter = cmdletContext.ProfilerConfig_ProfilingParameter; } if (requestProfilerConfig_profilerConfig_ProfilingParameter != null) { request.ProfilerConfig.ProfilingParameters = requestProfilerConfig_profilerConfig_ProfilingParameter; requestProfilerConfigIsNull = false; } System.String requestProfilerConfig_profilerConfig_S3OutputPath = null; if (cmdletContext.ProfilerConfig_S3OutputPath != null) { requestProfilerConfig_profilerConfig_S3OutputPath = cmdletContext.ProfilerConfig_S3OutputPath; } if (requestProfilerConfig_profilerConfig_S3OutputPath != null) { request.ProfilerConfig.S3OutputPath = requestProfilerConfig_profilerConfig_S3OutputPath; requestProfilerConfigIsNull = false; } // determine if request.ProfilerConfig should be set to null if (requestProfilerConfigIsNull) { request.ProfilerConfig = null; } if (cmdletContext.ProfilerRuleConfiguration != null) { request.ProfilerRuleConfigurations = cmdletContext.ProfilerRuleConfiguration; } // populate RemoteDebugConfig var requestRemoteDebugConfigIsNull = true; request.RemoteDebugConfig = new Amazon.SageMaker.Model.RemoteDebugConfig(); System.Boolean? requestRemoteDebugConfig_remoteDebugConfig_EnableRemoteDebug = null; if (cmdletContext.RemoteDebugConfig_EnableRemoteDebug != null) { requestRemoteDebugConfig_remoteDebugConfig_EnableRemoteDebug = cmdletContext.RemoteDebugConfig_EnableRemoteDebug.Value; } if (requestRemoteDebugConfig_remoteDebugConfig_EnableRemoteDebug != null) { request.RemoteDebugConfig.EnableRemoteDebug = requestRemoteDebugConfig_remoteDebugConfig_EnableRemoteDebug.Value; requestRemoteDebugConfigIsNull = false; } // determine if request.RemoteDebugConfig should be set to null if (requestRemoteDebugConfigIsNull) { request.RemoteDebugConfig = null; } if (cmdletContext.ResourceConfig != null) { request.ResourceConfig = cmdletContext.ResourceConfig; } // populate RetryStrategy var requestRetryStrategyIsNull = true; request.RetryStrategy = new Amazon.SageMaker.Model.RetryStrategy(); System.Int32? requestRetryStrategy_retryStrategy_MaximumRetryAttempt = null; if (cmdletContext.RetryStrategy_MaximumRetryAttempt != null) { requestRetryStrategy_retryStrategy_MaximumRetryAttempt = cmdletContext.RetryStrategy_MaximumRetryAttempt.Value; } if (requestRetryStrategy_retryStrategy_MaximumRetryAttempt != null) { request.RetryStrategy.MaximumRetryAttempts = requestRetryStrategy_retryStrategy_MaximumRetryAttempt.Value; requestRetryStrategyIsNull = false; } // determine if request.RetryStrategy should be set to null if (requestRetryStrategyIsNull) { request.RetryStrategy = null; } if (cmdletContext.RoleArn != null) { request.RoleArn = cmdletContext.RoleArn; } // populate SessionChainingConfig var requestSessionChainingConfigIsNull = true; request.SessionChainingConfig = new Amazon.SageMaker.Model.SessionChainingConfig(); System.Boolean? requestSessionChainingConfig_sessionChainingConfig_EnableSessionTagChaining = null; if (cmdletContext.SessionChainingConfig_EnableSessionTagChaining != null) { requestSessionChainingConfig_sessionChainingConfig_EnableSessionTagChaining = cmdletContext.SessionChainingConfig_EnableSessionTagChaining.Value; } if (requestSessionChainingConfig_sessionChainingConfig_EnableSessionTagChaining != null) { request.SessionChainingConfig.EnableSessionTagChaining = requestSessionChainingConfig_sessionChainingConfig_EnableSessionTagChaining.Value; requestSessionChainingConfigIsNull = false; } // determine if request.SessionChainingConfig should be set to null if (requestSessionChainingConfigIsNull) { request.SessionChainingConfig = null; } // populate StoppingCondition var requestStoppingConditionIsNull = true; request.StoppingCondition = new Amazon.SageMaker.Model.StoppingCondition(); System.Int32? requestStoppingCondition_stoppingCondition_MaxPendingTimeInSecond = null; if (cmdletContext.StoppingCondition_MaxPendingTimeInSecond != null) { requestStoppingCondition_stoppingCondition_MaxPendingTimeInSecond = cmdletContext.StoppingCondition_MaxPendingTimeInSecond.Value; } if (requestStoppingCondition_stoppingCondition_MaxPendingTimeInSecond != null) { request.StoppingCondition.MaxPendingTimeInSeconds = requestStoppingCondition_stoppingCondition_MaxPendingTimeInSecond.Value; requestStoppingConditionIsNull = false; } System.Int32? requestStoppingCondition_stoppingCondition_MaxRuntimeInSecond = null; if (cmdletContext.StoppingCondition_MaxRuntimeInSecond != null) { requestStoppingCondition_stoppingCondition_MaxRuntimeInSecond = cmdletContext.StoppingCondition_MaxRuntimeInSecond.Value; } if (requestStoppingCondition_stoppingCondition_MaxRuntimeInSecond != null) { request.StoppingCondition.MaxRuntimeInSeconds = requestStoppingCondition_stoppingCondition_MaxRuntimeInSecond.Value; requestStoppingConditionIsNull = false; } System.Int32? requestStoppingCondition_stoppingCondition_MaxWaitTimeInSecond = null; if (cmdletContext.StoppingCondition_MaxWaitTimeInSecond != null) { requestStoppingCondition_stoppingCondition_MaxWaitTimeInSecond = cmdletContext.StoppingCondition_MaxWaitTimeInSecond.Value; } if (requestStoppingCondition_stoppingCondition_MaxWaitTimeInSecond != null) { request.StoppingCondition.MaxWaitTimeInSeconds = requestStoppingCondition_stoppingCondition_MaxWaitTimeInSecond.Value; requestStoppingConditionIsNull = false; } // determine if request.StoppingCondition should be set to null if (requestStoppingConditionIsNull) { request.StoppingCondition = null; } if (cmdletContext.Tag != null) { request.Tags = cmdletContext.Tag; } // populate TensorBoardOutputConfig var requestTensorBoardOutputConfigIsNull = true; request.TensorBoardOutputConfig = new Amazon.SageMaker.Model.TensorBoardOutputConfig(); System.String requestTensorBoardOutputConfig_tensorBoardOutputConfig_LocalPath = null; if (cmdletContext.TensorBoardOutputConfig_LocalPath != null) { requestTensorBoardOutputConfig_tensorBoardOutputConfig_LocalPath = cmdletContext.TensorBoardOutputConfig_LocalPath; } if (requestTensorBoardOutputConfig_tensorBoardOutputConfig_LocalPath != null) { request.TensorBoardOutputConfig.LocalPath = requestTensorBoardOutputConfig_tensorBoardOutputConfig_LocalPath; requestTensorBoardOutputConfigIsNull = false; } System.String requestTensorBoardOutputConfig_tensorBoardOutputConfig_S3OutputPath = null; if (cmdletContext.TensorBoardOutputConfig_S3OutputPath != null) { requestTensorBoardOutputConfig_tensorBoardOutputConfig_S3OutputPath = cmdletContext.TensorBoardOutputConfig_S3OutputPath; } if (requestTensorBoardOutputConfig_tensorBoardOutputConfig_S3OutputPath != null) { request.TensorBoardOutputConfig.S3OutputPath = requestTensorBoardOutputConfig_tensorBoardOutputConfig_S3OutputPath; requestTensorBoardOutputConfigIsNull = false; } // determine if request.TensorBoardOutputConfig should be set to null if (requestTensorBoardOutputConfigIsNull) { request.TensorBoardOutputConfig = null; } if (cmdletContext.TrainingJobName != null) { request.TrainingJobName = cmdletContext.TrainingJobName; } // populate VpcConfig var requestVpcConfigIsNull = true; request.VpcConfig = new Amazon.SageMaker.Model.VpcConfig(); List<System.String> requestVpcConfig_vpcConfig_SecurityGroupId = null; if (cmdletContext.VpcConfig_SecurityGroupId != null) { requestVpcConfig_vpcConfig_SecurityGroupId = cmdletContext.VpcConfig_SecurityGroupId; } if (requestVpcConfig_vpcConfig_SecurityGroupId != null) { request.VpcConfig.SecurityGroupIds = requestVpcConfig_vpcConfig_SecurityGroupId; requestVpcConfigIsNull = false; } List<System.String> requestVpcConfig_vpcConfig_Subnet = null; if (cmdletContext.VpcConfig_Subnet != null) { requestVpcConfig_vpcConfig_Subnet = cmdletContext.VpcConfig_Subnet; } if (requestVpcConfig_vpcConfig_Subnet != null) { request.VpcConfig.Subnets = requestVpcConfig_vpcConfig_Subnet; requestVpcConfigIsNull = false; } // determine if request.VpcConfig should be set to null if (requestVpcConfigIsNull) { request.VpcConfig = null; } CmdletOutput output; // issue call var client = Client ?? CreateClient(_CurrentCredentials, _RegionEndpoint); try { var response = CallAWSServiceOperation(client, request); object pipelineOutput = null; pipelineOutput = cmdletContext.Select(response, this); output = new CmdletOutput { PipelineOutput = pipelineOutput, ServiceResponse = response }; } catch (Exception e) { output = new CmdletOutput { ErrorResponse = e }; } return output; } public ExecutorContext CreateContext() { return new CmdletContext(); } #endregion #region AWS Service Operation Call private Amazon.SageMaker.Model.CreateTrainingJobResponse CallAWSServiceOperation(IAmazonSageMaker client, Amazon.SageMaker.Model.CreateTrainingJobRequest request) { Utils.Common.WriteVerboseEndpointMessage(this, client.Config, "Amazon SageMaker Service", "CreateTrainingJob"); try { #if DESKTOP return client.CreateTrainingJob(request); #elif CORECLR return client.CreateTrainingJobAsync(request).GetAwaiter().GetResult(); #else #error "Unknown build edition" #endif } catch (AmazonServiceException exc) { var webException = exc.InnerException as System.Net.WebException; if (webException != null) { throw new Exception(Utils.Common.FormatNameResolutionFailureMessage(client.Config, webException.Message), webException); } throw; } } #endregion internal partial class CmdletContext : ExecutorContext { public Amazon.SageMaker.Model.AlgorithmSpecification AlgorithmSpecification { get; set; } public System.String CheckpointConfig_LocalPath { get; set; } public System.String CheckpointConfig_S3Uri { get; set; } public List<Amazon.SageMaker.Model.CollectionConfiguration> DebugHookConfig_CollectionConfiguration { get; set; } public Dictionary<System.String, System.String> DebugHookConfig_HookParameter { get; set; } public System.String DebugHookConfig_LocalPath { get; set; } public System.String DebugHookConfig_S3OutputPath { get; set; } public List<Amazon.SageMaker.Model.DebugRuleConfiguration> DebugRuleConfiguration { get; set; } public System.Boolean? EnableInterContainerTrafficEncryption { get; set; } public System.Boolean? EnableManagedSpotTraining { get; set; } public System.Boolean? EnableNetworkIsolation { get; set; } public Dictionary<System.String, System.String> Environment { get; set; } public System.String ExperimentConfig_ExperimentName { get; set; } public System.String ExperimentConfig_RunName { get; set; } public System.String ExperimentConfig_TrialComponentDisplayName { get; set; } public System.String ExperimentConfig_TrialName { get; set; } public Dictionary<System.String, System.String> HyperParameter { get; set; } public System.Boolean? InfraCheckConfig_EnableInfraCheck { get; set; } public List<Amazon.SageMaker.Model.Channel> InputDataConfig { get; set; } public Amazon.SageMaker.Model.OutputDataConfig OutputDataConfig { get; set; } public System.Boolean? ProfilerConfig_DisableProfiler { get; set; } public System.Int64? ProfilerConfig_ProfilingIntervalInMillisecond { get; set; } public Dictionary<System.String, System.String> ProfilerConfig_ProfilingParameter { get; set; } public System.String ProfilerConfig_S3OutputPath { get; set; } public List<Amazon.SageMaker.Model.ProfilerRuleConfiguration> ProfilerRuleConfiguration { get; set; } public System.Boolean? RemoteDebugConfig_EnableRemoteDebug { get; set; } public Amazon.SageMaker.Model.ResourceConfig ResourceConfig { get; set; } public System.Int32? RetryStrategy_MaximumRetryAttempt { get; set; } public System.String RoleArn { get; set; } public System.Boolean? SessionChainingConfig_EnableSessionTagChaining { get; set; } public System.Int32? StoppingCondition_MaxPendingTimeInSecond { get; set; } public System.Int32? StoppingCondition_MaxRuntimeInSecond { get; set; } public System.Int32? StoppingCondition_MaxWaitTimeInSecond { get; set; } public List<Amazon.SageMaker.Model.Tag> Tag { get; set; } public System.String TensorBoardOutputConfig_LocalPath { get; set; } public System.String TensorBoardOutputConfig_S3OutputPath { get; set; } public System.String TrainingJobName { get; set; } public List<System.String> VpcConfig_SecurityGroupId { get; set; } public List<System.String> VpcConfig_Subnet { get; set; } public System.Func<Amazon.SageMaker.Model.CreateTrainingJobResponse, NewSMTrainingJobCmdlet, object> Select { get; set; } = (response, cmdlet) => response.TrainingJobArn; } } }