tensorflow/inference/docker/build_artifacts/sagemaker/python_service.py (576 lines of code) (raw):
# Copyright 2019-2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"). You
# may not use this file except in compliance with the License. A copy of
# the License is located at
#
# http://aws.amazon.com/apache2.0/
#
# or in the "license" file accompanying this file. This file is
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
# ANY KIND, either express or implied. See the License for the specific
# language governing permissions and limitations under the License.
# monkey patching to ensure that all I/O operations are properly made asynchronous.
import gevent.monkey
gevent.monkey.patch_all()
import bisect
import argparse
import importlib.util
import json
import logging
import os
import signal
import subprocess
import grpc
import sys
import shutil
import copy
import pickle
import falcon
import requests
import random
from multi_model_utils import MultiModelException, lock
import tfs_utils
SAGEMAKER_MULTI_MODEL_ENABLED = os.environ.get("SAGEMAKER_MULTI_MODEL", "false").lower() == "true"
INFERENCE_SCRIPT_PATH = (
"/opt/ml/code/inference.py"
if SAGEMAKER_MULTI_MODEL_ENABLED
else "/opt/ml/model/code/inference.py"
)
SAGEMAKER_BATCHING_ENABLED = os.environ.get("SAGEMAKER_TFS_ENABLE_BATCHING", "false").lower()
MODEL_CONFIG_FILE_PATH = "/sagemaker/model-config.cfg"
TFS_GRPC_PORTS = os.environ.get("TFS_GRPC_PORTS")
TFS_REST_PORTS = os.environ.get("TFS_REST_PORTS")
SAGEMAKER_TFS_PORT_RANGE = os.environ.get("SAGEMAKER_SAFE_PORT_RANGE")
TFS_INSTANCE_COUNT = int(os.environ.get("SAGEMAKER_TFS_INSTANCE_COUNT", "1"))
logging.basicConfig(
format="%(process)d %(asctime)s %(levelname)-8s %(message)s", force=True, level=logging.INFO
)
log = logging.getLogger(__name__)
CUSTOM_ATTRIBUTES_HEADER = "X-Amzn-SageMaker-Custom-Attributes"
MME_TFS_INSTANCE_STATUS_FILE = "/sagemaker/tfs_instance.pickle"
def default_handler(data, context):
"""A default inference request handler that directly send post request to TFS rest port with
un-processed data and return un-processed response
:param data: input data
:param context: context instance that contains tfs_rest_uri
:return: inference response from TFS model server
"""
data = data.read().decode("utf-8")
if not isinstance(data, str):
data = json.loads(data)
response = requests.post(context.rest_uri, data=data)
return response.content, context.accept_header
class TfsInstanceStatus:
def __init__(self, rest_port: str, grpc_port: str, pid: int):
self.rest_port = rest_port
self.grpc_port = grpc_port
self.pid = pid
def __repr__(self):
return f"TFS Instance Status (rest_port : {self.rest_port}, grpc_port: {self.grpc_port}, pid: {self.pid}))"
class PythonServiceResource:
def __init__(self):
if SAGEMAKER_MULTI_MODEL_ENABLED:
self._mme_tfs_instances_status: dict[str, [TfsInstanceStatus]] = {}
self._tfs_ports = self._parse_sagemaker_port_range_mme(SAGEMAKER_TFS_PORT_RANGE)
self._tfs_available_ports = self._parse_sagemaker_port_range_mme(
SAGEMAKER_TFS_PORT_RANGE
)
# If Multi-Model mode is enabled, dependencies/handlers will be imported
# during the _handle_load_model_post()
self.model_handlers = {}
else:
self._tfs_grpc_ports = self._parse_concat_ports(TFS_GRPC_PORTS)
self._tfs_rest_ports = self._parse_concat_ports(TFS_REST_PORTS)
self._channels = {}
for grpc_port in self._tfs_grpc_ports:
# Initialize grpc channel here so gunicorn worker could have mapping
# between each grpc port and channel
self._setup_channel(grpc_port)
self._default_handlers_enabled = False
if os.path.exists(INFERENCE_SCRIPT_PATH):
# Single-Model Mode & Multi-Model Mode both use one inference.py
self._handler, self._input_handler, self._output_handler = self._import_handlers()
self._handlers = self._make_handler(
self._handler, self._input_handler, self._output_handler
)
else:
self._handlers = default_handler
self._default_handlers_enabled = True
self._tfs_enable_batching = SAGEMAKER_BATCHING_ENABLED == "true"
self._tfs_default_model_name = os.environ.get("TFS_DEFAULT_MODEL_NAME", "None")
self._tfs_inter_op_parallelism = os.environ.get("SAGEMAKER_TFS_INTER_OP_PARALLELISM", 0)
self._tfs_intra_op_parallelism = os.environ.get("SAGEMAKER_TFS_INTRA_OP_PARALLELISM", 0)
self._tfs_instance_count = int(os.environ.get("SAGEMAKER_TFS_INSTANCE_COUNT", 1))
self._gunicorn_workers = int(os.environ.get("SAGEMAKER_GUNICORN_WORKERS", 1))
self._tfs_wait_time_seconds = int(
os.environ.get("SAGEMAKER_TFS_WAIT_TIME_SECONDS", 55 // self._tfs_instance_count)
)
def on_post(self, req, res, model_name=None):
if model_name or "invocations" in req.uri:
self._handle_invocation_post(req, res, model_name)
else:
data = json.loads(req.stream.read().decode("utf-8"))
self._handle_load_model_post(res, data)
def _parse_concat_ports(self, concat_ports):
return concat_ports.split(",")
def _pick_port(self, ports):
return random.choice(ports)
def _parse_sagemaker_port_range_mme(self, port_range):
lower, upper = port_range.split("-")
lower = int(lower)
upper = lower + int((int(upper) - lower) * 0.9) # only utilizing 90% of the ports
rest_port = lower
grpc_port = (lower + upper) // 2
tfs_ports = {
"rest_port": [port for port in range(rest_port, grpc_port)],
"grpc_port": [port for port in range(grpc_port, upper)],
}
return tfs_ports
def _ports_available(self):
rest_ports = self._tfs_available_ports["rest_port"]
grpc_ports = self._tfs_available_ports["grpc_port"]
return len(rest_ports) > 0 and len(grpc_ports) > 0
def _update_ports_available(self):
self._tfs_available_ports = copy.deepcopy(self._tfs_ports)
for _, tf_status_list in self._mme_tfs_instances_status.items():
for tf_status in tf_status_list:
if tf_status.rest_port in self._tfs_available_ports["rest_port"]:
self._tfs_available_ports["rest_port"].remove(tf_status.rest_port)
if tf_status.grpc_port in self._tfs_available_ports["grpc_port"]:
self._tfs_available_ports["grpc_port"].remove(tf_status.grpc_port)
log.info(f"available ports : {self._tfs_available_ports}")
def _load_model(self, model_name, base_path, rest_port, grpc_port, model_index):
if self.validate_model_dir(base_path):
try:
self._import_custom_modules(model_name)
tfs_config = tfs_utils.create_tfs_config_individual_model(model_name, base_path)
tfs_config_file = "/sagemaker/tfs-config/{}/{}/model-config.cfg".format(
model_name, model_index
)
log.info("tensorflow serving model config: \n%s\n", tfs_config)
os.makedirs(os.path.dirname(tfs_config_file))
with open(tfs_config_file, "w", encoding="utf8") as f:
f.write(tfs_config)
batching_config_file = "/sagemaker/batching/{}/{}/batching-config.cfg".format(
model_name, model_index
)
if self._tfs_enable_batching:
tfs_utils.create_batching_config(batching_config_file)
cmd = tfs_utils.tfs_command(
grpc_port,
rest_port,
tfs_config_file,
self._tfs_enable_batching,
batching_config_file,
tfs_intra_op_parallelism=self._tfs_intra_op_parallelism,
tfs_inter_op_parallelism=self._tfs_inter_op_parallelism,
)
log.info("MME starts tensorflow serving with command: {}".format(cmd))
p = subprocess.Popen(cmd.split())
tfs_utils.wait_for_model(rest_port, model_name, self._tfs_wait_time_seconds, p.pid)
log.info("started tensorflow serving (pid: %d)", p.pid)
return {
"status": falcon.HTTP_200,
"body": json.dumps(
{
"success": "Successfully loaded model {}, "
"listening on rest port {} "
"and grpc port {}.".format(model_name, rest_port, grpc_port)
},
),
"pid": p.pid,
}
except MultiModelException as multi_model_exception:
if multi_model_exception.code == 409:
return {
"status": falcon.HTTP_409,
"body": multi_model_exception.msg,
"pid": multi_model_exception.pid,
}
elif multi_model_exception.code == 408:
cpu_memory_usage = tfs_utils.get_cpu_memory_util()
log.info(f"cpu memory usage {cpu_memory_usage}")
if cpu_memory_usage > 70:
return {
"status": falcon.HTTP_507,
"body": "Memory exhausted: not enough memory to start TFS instance",
"pid": multi_model_exception.pid,
}
return {
"status": falcon.HTTP_408,
"body": multi_model_exception.msg,
"pid": multi_model_exception.pid,
}
else:
return {
"status": falcon.HTTP_500,
"body": multi_model_exception.msg,
"pid": multi_model_exception.pid,
}
except FileExistsError as e:
return {
"status": falcon.HTTP_409,
"body": json.dumps(
{"error": "Model {} is already loaded. {}".format(model_name, str(e))}
),
}
except OSError as os_error:
log.error(f"failed to load model with exception {os_error}")
if os_error.errno == 12:
return {
"status": falcon.HTTP_507,
"body": "Memory exhausted: not enough memory to start TFS instance",
}
else:
return {
"status": falcon.HTTP_500,
"body": os_error.strerror,
}
else:
return {
"status": falcon.HTTP_404,
"body": json.dumps(
{
"error": "Could not find valid base path {} for servable {}".format(
base_path, model_name
)
}
),
}
def _handle_load_model_post(self, res, data): # noqa: C901
with lock():
model_name = data["model_name"]
base_path = data["url"]
# sync sync_local_mme_instance_status & update available ports
self._sync_local_mme_instance_status()
self._update_ports_available()
self._sync_model_handlers()
# model is already loaded
if model_name in self._mme_tfs_instances_status:
res.status = falcon.HTTP_409
res.body = json.dumps({"error": "Model {} is already loaded.".format(model_name)})
return
is_load_successful = True
response = {}
for i in range(self._tfs_instance_count):
# check if there are available ports
if not self._ports_available():
is_load_successful = False
response["status"] = falcon.HTTP_507
response["body"] = json.dumps(
{"error": "Memory exhausted: no available ports to load the model."}
)
break
tfs_rest_port = self._tfs_available_ports["rest_port"].pop()
tfs_grpc_port = self._tfs_available_ports["grpc_port"].pop()
response = self._load_model(model_name, base_path, tfs_rest_port, tfs_grpc_port, i)
if "pid" in response:
self._mme_tfs_instances_status.setdefault(model_name, []).append(
TfsInstanceStatus(tfs_rest_port, tfs_grpc_port, response["pid"])
)
if response["status"] != falcon.HTTP_200:
log.info(f"Failed to load model : {model_name}")
is_load_successful = False
break
if not is_load_successful:
log.info(f"Failed to load model : {model_name}, Starting to cleanup...")
self._delete_model(model_name)
self._remove_model_config(model_name)
else:
self._upload_mme_instance_status()
res.status = response["status"]
res.body = response["body"]
def _import_custom_modules(self, model_name):
inference_script_path = "/opt/ml/models/{}/model/code/inference.py".format(model_name)
python_lib_path = "/opt/ml/models/{}/model/code/lib".format(model_name)
if os.path.exists(python_lib_path):
log.info(
"Add Python code library for the model {} found at path {}.".format(
model_name, python_lib_path
)
)
sys.path.append(python_lib_path)
else:
log.info(
"Python code library for the model {} not found at path {}.".format(
model_name, python_lib_path
)
)
if os.path.exists(inference_script_path):
log.info(
"Importing handlers from model-specific inference script for the model {} found at path {}.".format(
model_name, inference_script_path
)
)
handler, input_handler, output_handler = self._import_handlers(inference_script_path)
model_handlers = self._make_handler(handler, input_handler, output_handler)
self.model_handlers[model_name] = model_handlers
else:
log.info(
"Model-specific inference script for the model {} not found at path {}.".format(
model_name, inference_script_path
)
)
def _handle_invocation_post(self, req, res, model_name=None):
if SAGEMAKER_MULTI_MODEL_ENABLED:
if model_name:
if self._gunicorn_workers > 1:
if model_name not in self._mme_tfs_instances_status or not self._check_pid(
self._mme_tfs_instances_status[model_name][0].pid
):
with lock():
self._sync_local_mme_instance_status()
self._sync_model_handlers()
if model_name not in self._mme_tfs_instances_status:
res.status = falcon.HTTP_404
res.body = json.dumps(
{"error": "Model {} is not loaded yet.".format(model_name)}
)
return
else:
log.info("model name: {}".format(model_name))
rest_ports = [
status.rest_port for status in self._mme_tfs_instances_status[model_name]
]
rest_port = self._pick_port(rest_ports)
log.info("rest port: {}".format(str(rest_port)))
grpc_ports = [
status.grpc_port for status in self._mme_tfs_instances_status[model_name]
]
grpc_port = grpc_ports[rest_ports.index(rest_port)]
log.info("grpc port: {}".format(str(grpc_port)))
data, context = tfs_utils.parse_request(
req,
rest_port,
grpc_port,
self._tfs_default_model_name,
model_name=model_name,
)
else:
res.status = falcon.HTTP_400
res.body = json.dumps({"error": "Invocation request does not contain model name."})
return
else:
# Randomly pick port used for routing incoming request.
grpc_port = self._pick_port(self._tfs_grpc_ports)
rest_port = self._pick_port(self._tfs_rest_ports)
data, context = tfs_utils.parse_request(
req,
rest_port,
grpc_port,
self._tfs_default_model_name,
channel=self._channels[grpc_port],
)
try:
res.status = falcon.HTTP_200
handlers = self._handlers
if SAGEMAKER_MULTI_MODEL_ENABLED and model_name in self.model_handlers:
log.info(
"Model-specific inference script for the model {} exists, importing handlers.".format(
model_name
)
)
handlers = self.model_handlers[model_name]
elif not self._default_handlers_enabled:
log.info(
"Universal inference script exists at path {}, importing handlers.".format(
INFERENCE_SCRIPT_PATH
)
)
else:
log.info(
"Model-specific inference script and universal inference script both do not exist, using default handlers."
)
res.body, res.content_type = handlers(data, context)
except Exception as e: # pylint: disable=broad-except
log.exception("exception handling request: {}".format(e))
res.status = falcon.HTTP_500
res.body = json.dumps({"error": str(e)}).encode("utf-8") # pylint: disable=E1101
def _setup_channel(self, grpc_port):
if grpc_port not in self._channels:
log.info("Creating grpc channel for port: %s", grpc_port)
self._channels[grpc_port] = grpc.insecure_channel("localhost:{}".format(grpc_port))
def _import_handlers(self, inference_script=INFERENCE_SCRIPT_PATH):
spec = importlib.util.spec_from_file_location("inference", inference_script)
inference = importlib.util.module_from_spec(spec)
spec.loader.exec_module(inference)
_custom_handler, _custom_input_handler, _custom_output_handler = None, None, None
if hasattr(inference, "handler"):
_custom_handler = inference.handler
elif hasattr(inference, "input_handler") and hasattr(inference, "output_handler"):
_custom_input_handler = inference.input_handler
_custom_output_handler = inference.output_handler
else:
raise NotImplementedError("Handlers are not implemented correctly in user script.")
return _custom_handler, _custom_input_handler, _custom_output_handler
def _make_handler(self, custom_handler, custom_input_handler, custom_output_handler):
if custom_handler:
return custom_handler
def handler(data, context):
processed_input = custom_input_handler(data, context)
response = requests.post(context.rest_uri, data=processed_input)
return custom_output_handler(response, context)
return handler
def on_get(self, req, res, model_name=None): # pylint: disable=W0613
with lock():
self._sync_local_mme_instance_status()
if model_name is None:
models_info = {}
uri = "http://localhost:{}/v1/models/{}"
for model, tfs_instance_status in self._mme_tfs_instances_status.items():
try:
info = json.loads(
requests.get(
uri.format(tfs_instance_status[0].rest_port, model)
).content
)
models_info[model] = info
except ValueError as e:
log.exception("exception handling request: {}".format(e))
res.status = falcon.HTTP_500
res.body = json.dumps({"error": str(e)}).encode("utf-8")
res.status = falcon.HTTP_200
res.body = json.dumps(models_info)
else:
if model_name not in self._mme_tfs_instances_status:
res.status = falcon.HTTP_404
res.body = json.dumps(
{"error": "Model {} is loaded yet.".format(model_name)}
).encode("utf-8")
else:
port = self._mme_tfs_instances_status[model_name].rest_port
uri = "http://localhost:{}/v1/models/{}".format(port, model_name)
try:
info = requests.get(uri)
res.status = falcon.HTTP_200
res.body = json.dumps({"model": info}).encode("utf-8")
except ValueError as e:
log.exception("exception handling GET models request.")
res.status = falcon.HTTP_500
res.body = json.dumps({"error": str(e)}).encode("utf-8")
def on_delete(self, req, res, model_name): # pylint: disable=W0613
with lock():
self._sync_local_mme_instance_status()
if model_name not in self._mme_tfs_instances_status:
res.status = falcon.HTTP_404
res.body = json.dumps({"error": "Model {} is not loaded yet".format(model_name)})
else:
try:
self._delete_model(model_name)
self._remove_model_config(model_name)
del self._mme_tfs_instances_status[model_name]
self._upload_mme_instance_status()
res.status = falcon.HTTP_200
res.body = json.dumps(
{"success": "Successfully unloaded model {}.".format(model_name)}
)
except OSError as error:
res.status = falcon.HTTP_500
res.body = json.dumps({"error": str(error)}).encode("utf-8")
def _delete_model(self, model_name):
if model_name not in self._mme_tfs_instances_status:
return
for tfs_status in self._mme_tfs_instances_status[model_name]:
os.kill(tfs_status.pid, signal.SIGKILL)
def _remove_model_config(self, model_name):
shutil.rmtree("/sagemaker/tfs-config/{}".format(model_name), ignore_errors=True)
shutil.rmtree("/sagemaker/batching/{}".format(model_name), ignore_errors=True)
def validate_model_dir(self, model_path):
# model base path doesn't exits
if not os.path.exists(model_path):
return False
versions = []
for _, dirs, _ in os.walk(model_path):
for dirname in dirs:
if dirname.isdigit():
versions.append(dirname)
return self.validate_model_versions(versions)
def validate_model_versions(self, versions):
if not versions:
return False
for v in versions:
if v.isdigit():
# TensorFlow model server will succeed with any versions found
# even if there are directories that's not a valid model version,
# the loading will succeed.
return True
return False
def _upload_mme_instance_status(self):
log.info(
"uploaded mme instance status file with content: {}".format(
self._mme_tfs_instances_status
)
)
with open(MME_TFS_INSTANCE_STATUS_FILE, "wb") as handle:
pickle.dump(self._mme_tfs_instances_status, handle, protocol=pickle.HIGHEST_PROTOCOL)
def _sync_local_mme_instance_status(self):
if not os.path.exists(MME_TFS_INSTANCE_STATUS_FILE):
log.info("mme instance status file does not found.")
return
with open(MME_TFS_INSTANCE_STATUS_FILE, "rb") as handle:
self._mme_tfs_instances_status = pickle.load(handle)
log.info(
"updated local mme instance status with content: {}".format(
self._mme_tfs_instances_status
)
)
def _sync_model_handlers(self):
for model_name, _ in self._mme_tfs_instances_status.items():
if model_name not in self.model_handlers:
self._import_custom_modules(model_name)
def _check_pid(self, pid):
"""Check For the existence of a unix pid."""
try:
os.kill(pid, 0)
except OSError:
return False
else:
return True
class PingResource:
def on_get(self, req, res): # pylint: disable=W0613
res.status = falcon.HTTP_200
class ServiceResources:
def __init__(self):
self._enable_model_manager = SAGEMAKER_MULTI_MODEL_ENABLED
self._python_service_resource = PythonServiceResource()
self._ping_resource = PingResource()
def add_routes(self, application):
application.add_route("/ping", self._ping_resource)
application.add_route("/invocations", self._python_service_resource)
if self._enable_model_manager:
application.add_route("/models", self._python_service_resource)
application.add_route("/models/{model_name}", self._python_service_resource)
application.add_route("/models/{model_name}/invoke", self._python_service_resource)
app = falcon.API()
resources = ServiceResources()
resources.add_routes(app)
if __name__ == "__main__":
# Define the command-line arguments
parser = argparse.ArgumentParser()
parser.add_argument(
"-b", "--bind", type=str, required=True, help="Specify a server socket to bind."
)
parser.add_argument(
"-k",
"--worker-class",
type=str,
required=True,
choices=["sync", "eventlet", "gevent", "tornado", "gthread", "sync"],
help="The type of worker process to run",
)
parser.add_argument("-c", "--chdir", type=str, required=True, help="Change root dir")
parser.add_argument(
"-w",
"--workers",
type=int,
required=True,
help="The number of worker processes. This number should generally be between 2-4 workers per core in the server.",
)
parser.add_argument("-t", "--threads", type=int, required=True, help="The number of threads")
parser.add_argument("-l", "--log-level", type=str, required=True)
parser.add_argument("-o", "--timeout", type=int, required=True, help="Gunicorn timeout")
# Parse the command-line arguments
args = parser.parse_args()
# Create gunicorn options
options = {
"bind": args.bind,
"worker_class": args.worker_class,
"chdir": args.chdir,
"workers": args.workers,
"threads": args.threads,
"loglevel": args.log_level,
"timeout": args.timeout,
"raw_env": [
f"TFS_GRPC_PORTS={TFS_GRPC_PORTS}",
f"TFS_REST_PORTS={TFS_REST_PORTS}",
f'SAGEMAKER_MULTI_MODEL={os.environ.get("SAGEMAKER_MULTI_MODEL")}',
f"SAGEMAKER_SAFE_PORT_RANGE={SAGEMAKER_TFS_PORT_RANGE}",
f'SAGEMAKER_TFS_WAIT_TIME_SECONDS={os.environ.get("SAGEMAKER_TFS_WAIT_TIME_SECONDS")}',
f'SAGEMAKER_TFS_INTER_OP_PARALLELISM={os.environ.get("SAGEMAKER_TFS_INTER_OP_PARALLELISM", 0)}',
f'SAGEMAKER_TFS_INTRA_OP_PARALLELISM={os.environ.get("SAGEMAKER_TFS_INTRA_OP_PARALLELISM", 0)}',
f'SAGEMAKER_TFS_INSTANCE_COUNT={os.environ.get("SAGEMAKER_TFS_INSTANCE_COUNT", "1")}',
f'SAGEMAKER_GUNICORN_WORKERS={os.environ.get("SAGEMAKER_GUNICORN_WORKERS", "1")}',
],
}
from gunicorn.app.base import BaseApplication
class StandaloneApplication(BaseApplication):
def __init__(self, app, options=None):
self.options = options or {}
self.application = app
super().__init__()
def load_config(self):
config = {
key: value
for key, value in self.options.items()
if key in self.cfg.settings and value is not None
}
for key, value in config.items():
self.cfg.set(key.lower(), value)
def load(self):
return self.application
StandaloneApplication(app, options).run()