in src/fmeval/model_runners/sm_jumpstart_model_runner.py [0:0]
def predict(self, prompt: str) -> Union[Tuple[Optional[str], Optional[float]], List[float]]:
"""
Invoke the SageMaker endpoint and parse the model response.
:param prompt: Input data for which you want the model to provide inference.
"""
composed_data = self._composer.compose(prompt)
model_output = self._predictor.predict(
data=composed_data,
custom_attributes=self._custom_attributes,
component_name=self._component_name,
)
# expect embedding from all text embedding models, return directly
if self._is_embedding_model:
embedding = self._extractor.extract_embedding(data=model_output, num_records=1)
return embedding
# expect output from all model responses in JS
output = self._extractor.extract_output(data=model_output, num_records=1)
log_probability = None
try:
log_probability = self._extractor.extract_log_probability(data=model_output, num_records=1)
except EvalAlgorithmClientError as e:
# log_probability may be missing
logger.warning(f"Unable to fetch log_probability from model response: {e}")
return output, log_probability